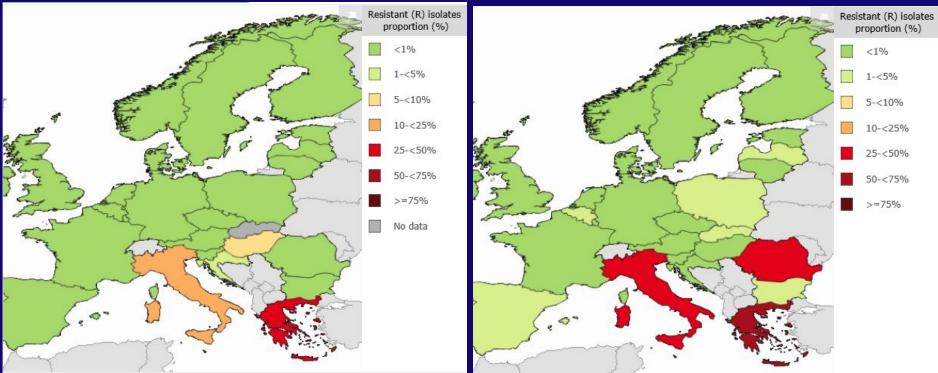
# Periprosthetic Joint Infections (PJI)

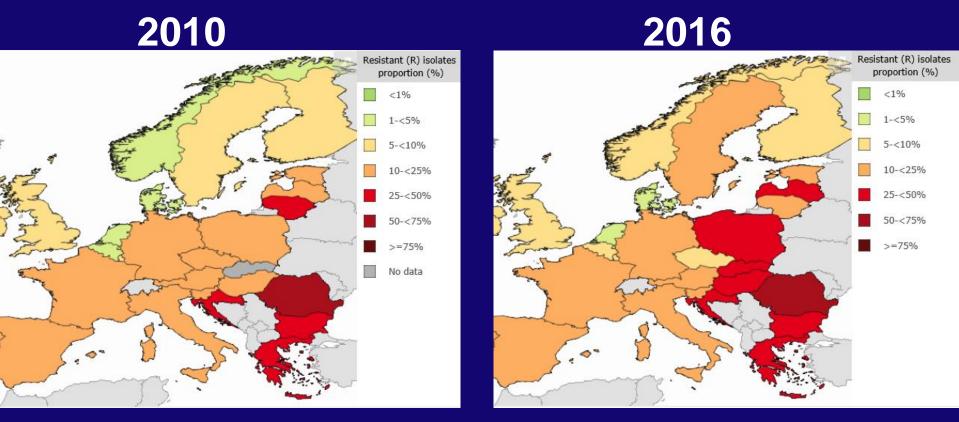



Olga Savvidou Associate Professor of Orthopedics First Department of Orthopaedics, Athens University Medical School ATTIKON University Hospital



#### KPC CRE Kleb pneumo in Europe

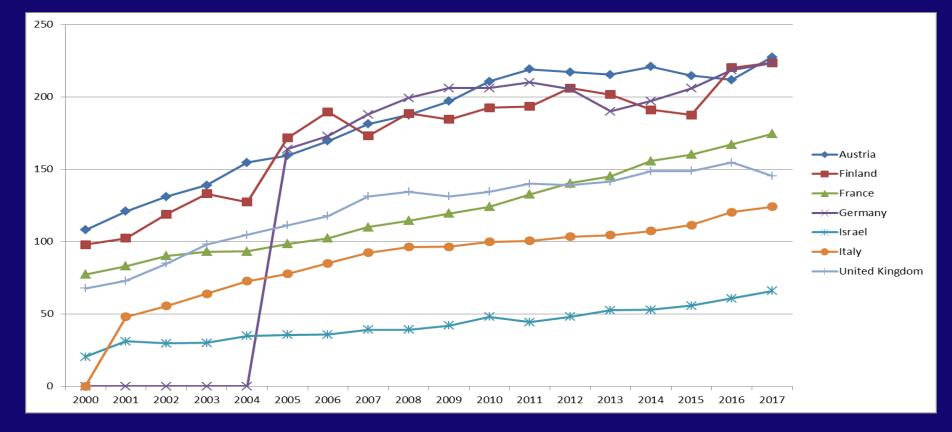
#### 2010




Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Stockholm: ECDC; 2018. Grundmann H et al. The Lancet Infectious Diseases 17(2): 153–163, 2017

2016

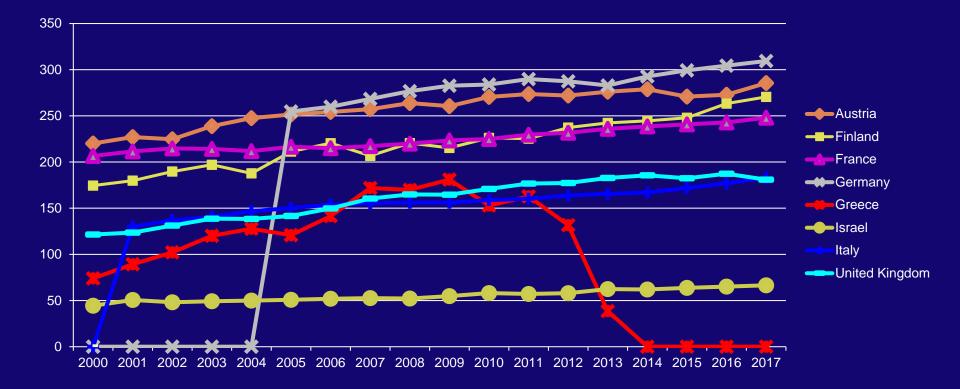



#### CR-*Pseudomonas aeruginosa* Europe



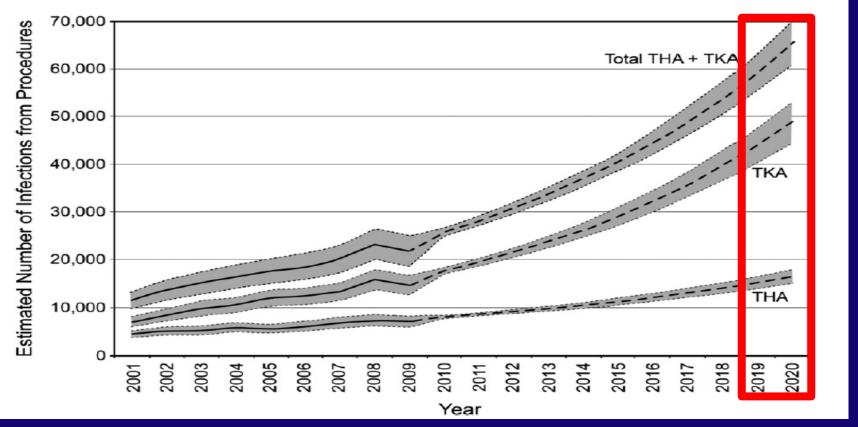
Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. Stockholm: ECDC; 2018. Grundmann H et al. The Lancet Infectious Diseases 17(2): 153–163, 2017




#### Total Knee Arthroplasty trends 2000-2017



http://www.oecd-ilibrary.org/




#### Total Hip Arthroplasty trends 2000-2017



http://www.oecd-ilibrary.org/

#### Increase in PJI rates 2001 – 2009 (USA)



Kurtz, S et al The Journal of Arthroplasty Vol. 27 (8). 1 2012





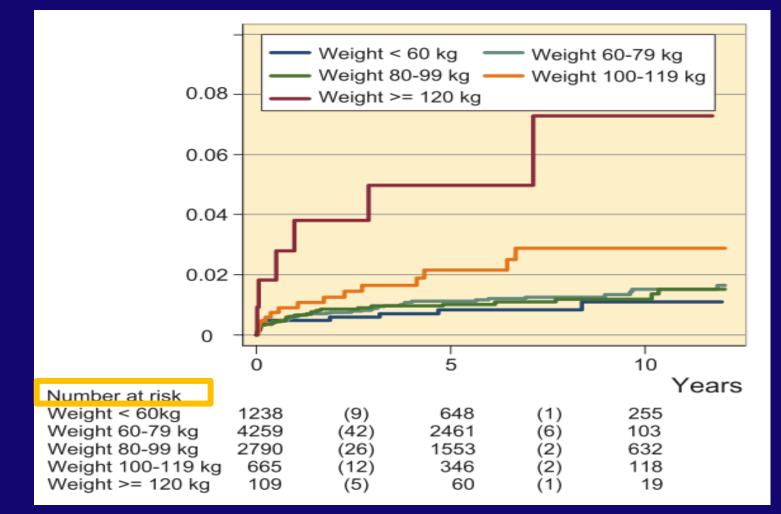
- 0.5% to 1% of all THR
- 1% to 2% in TKR
- Generally poor outcome
- Very expensive to treat



#### Better Preventive Risk Assessment And Mitigation

odifiab

**Diabetes control** Nutritional status Nicotine dependence Obesity Staph aureus colonization Lower extremity ulcers Lymphedema Immunosuppression


Congenital immunodeficiency Prior radiation Immunosuppression



preoperative hospital stay

duration of operation

### Weight > 100kg; BMI >35 increase infection risk



Lübbeke et al. Acta Orthopaedica 2016; 87 (2): 132–138



### **Prevention of infection**

 Hospitals or surgeons with greater volumes of TJA have lower risks of preoperative adverse effects, including infection

 Postoperative urinary tract infection is a risk factor for deep periprosthetic infection



## **Prevention of infection**

- Routine urinary catheterization after TJR does not increase the risk of deep infection.
- No evidence that the use of drains in TJR significantly influences the risk of infection postoperatively.
- Cultures of the suction and draining tips do not correlate with further infection and should not be used.



## **Prevention of infection**

- Antibiotic Prophylaxis
  - Vancomycin (MRSA)
  - Cefazolin (non-penicillin allergic)
  - Clindamycin (penicillin allergic)
  - Antibiotic loaded bone cement in cemented TJR haw been shown to reduce the risk of infection.







- Not always obvious
- Different presentation





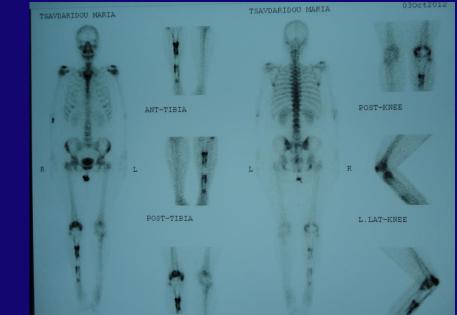


## Different clinical scenarios



- Early (within 4 weeks)
- Ongoing drainage
- Poor wound healing
- Diagnosis in easy
  - Unremitting pain
  - Erythema and swelling
  - Drainage
  - Fever




- Late (> 4weeks)
- Not always obvious
- Always suspect in painful TJR
- Always suspect in loose TJR
- Diagnosis is complex
  - Negative wound history
  - No other reason for elevated ESR
  - ESR<30
  - CRP<10



- Acute Hematogenous
- Least common
- Acute presentation
- ? Within 2-4 weeks
- Best treated ASAP
- Presentation usually obvious
  - ESP usually>30 and CRP >10



Aspiration of pus confirms diagnosis



# 9/2013

# **Staph Aureus**

## **Diagnosis- Serological Tests**

- The serum levels interleukin-6, CRP, ESR, & WBC count
- Serum intereukin-6 level
  - sensitivity of 1.0
  - specificity of 0.95
  - accuracy 97%

Di Cesare et al JBJS-Am 2005



## **Diagnosis- Serological Tests**

- The combination of :
- IL-6 >5.12 pg/mL

#### &

#### CRP >0.3 mg/L

correctly identified in 94% of pts having low-grade infection whereas just 6% of pts were aseptic.



Ettinger et al, Clin Infect Dis. 2015

Diagnosis - Joint aspiration prior to revision

- There is <u>no need</u> for routine aspiration
  - In the absence of a suspicious history
  - If no inflammatory conditions
  - If the ESR and CRP are negative

- A joint aspiration is required
  - if either the ESR or CRP are positive





#### **Diagnosis - Joint aspiration**

- In THR: sensitivity 86% and specificity 94%
- In TKR, sensitivity 60% and specificity 95%
- WBC count of joint fluid with neutrophil > 60% 65% are suggestive on infection
- Molecular techniques such intraoperative real time Polymerase Chain Reaction (PCR) techniques and histopathology of frozen sections is a good combination



Miyamae et al Acta Orthop. 2013

## Diagnosis - Radiographs

- Very little use in the diagnosis
- Deep infection may be suspected in pts with:
- rapid osteolysis
- endosteal scalloping
- marked periostitis

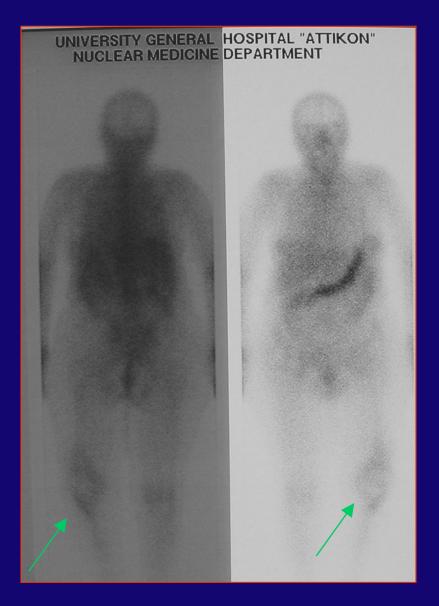




### Diagnosis - Nuclear scan

#### Technitium bone scan

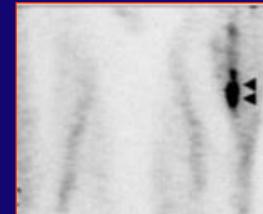
- very sensitive but not very specific
- Bone scan (+) for up to 2 yrs post-op
- a (-) bone scan can exclude infection

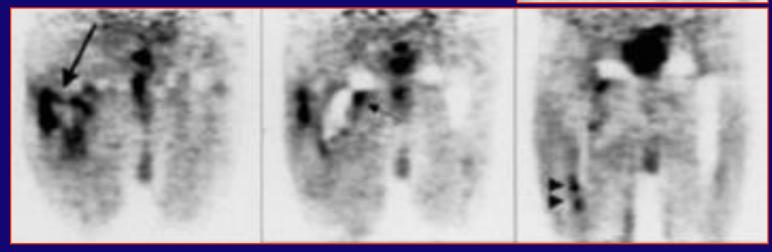





### Diagnosis - Nuclear scan

- Indium labeled white cell scan
  - if the uptake on the Indium scan is more intense than the uptake on the Te bone scan, it is likely that the prosthetic joint is infected



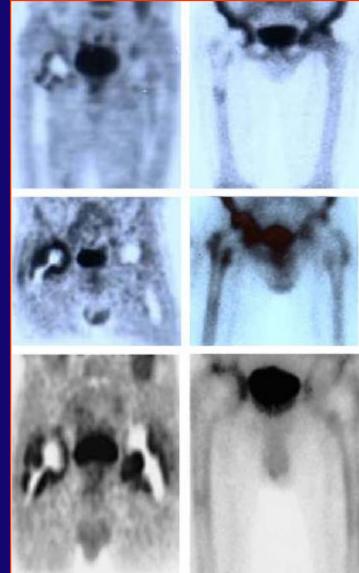

## Diagnosis - FDG-PET scan

- Fluorodeoxyglucose-positron emission tomography (FDG-PET) in infected THA
   Sensitivity 91%
  - Specificity 89%

Zhuang et al Orthop 2001

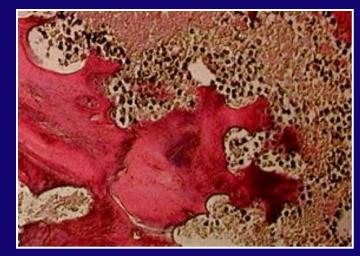






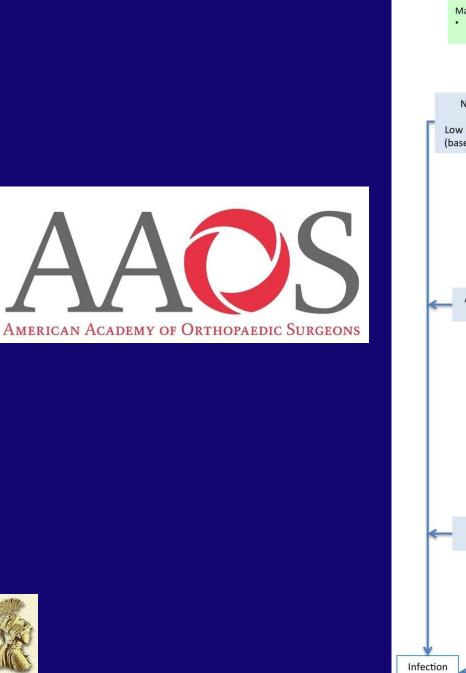

## Diagnosis - FDG-PET scan

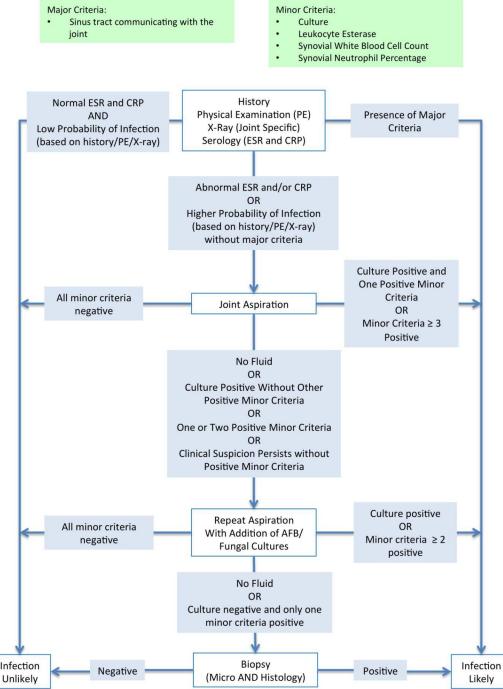
- FDG-PET scans were compared to Tc-bone scans
  - 50 patients, 70 TJR
    - 50 symptomatic
    - 20 asymptomatic
  - Sensitivity and specificity of the FDG-PET scan was 91% & 92% respectively
  - Specificity of the Tc-bone scan were 70% & 70% respectively




Mumme et al Acta Orthop 2005




**Role of Frozen Section** 


- Intraop findings suspicious
- Otherwise negative preop work-up
- Good pathologist
- Sampling
- >5 PMN/hpf
  - Sensitive 80-85%
  - Specificity 90-95%



- If criteria changed to >10 PMN/hpf
  - Sensitivity 84%
  - Specificity improved to 99%







#### Karan Goswam et al . Curr Rev Musculoskelet Med (2018) 11:428-438

#### MSIS definition of PJI-PJI exists when: The Musculoskeletal Society 2011 definition of PJI

- There is a sinus tract communicating with the prosthesis; or
- 2 A pathogen is isolated by culture from two or more separate tissue or fluid samples obtained from the affected prosthetic joint; or
- When 4 of the following 6 criteria exist: 3
  - Elevated serum erythrocyte sedimentation rate and serum C-reactive protein (CRP) concentration
  - Elevated synovial white blood cell count
  - c. Elevated synovial polymorphonuclear percentage (PMN %)
  - d. Presence of purulence in the affected joint
  - e. Isolation of a microorganism in one culture of periprosthetic tissue or fluid, or
  - f. Greater than 5 neutrophils per high-power field in 5 high-power fields observed from histologic analysis of periprosthetic tissue at × 400 magnification

Table 2 The International Consensus Meeting (ICM) definition of PJI [14] (Reprinted with permission from Definition of Periprosthetic Joint Infection. Javad Parvizi and Thorsten Gehrke. The Journal of Arthroplasty. Elsevier; 2014. License number 4332751327806)

#### ICM definition of PJI

|                | PJI is present if one of two major criteria or three of five minor criteria exists: |                                                                          |                                                                           |  |  |  |
|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Major criteria | <ol> <li>There is a sinus tract communicating with the prosthesis; or</li> </ol>    |                                                                          |                                                                           |  |  |  |
| Major criteria | 1. Two positive periprosthetic cultures with phenotypically identical organisms; or |                                                                          |                                                                           |  |  |  |
| Minor criteria | Having three of the following minor criteria:                                       | Acute PJI (<90 days)                                                     | Chronic PJI (>90 days)                                                    |  |  |  |
|                | 1.1. Elevated ESR or CRP                                                            | ESR: no threshold                                                        | ESR: > 30 mm/h                                                            |  |  |  |
|                |                                                                                     | CRP > 100 mg/L                                                           | CRP>10 mg/L                                                               |  |  |  |
|                | 2. Elevated SF WBC count                                                            | 10,000 cells/µL                                                          | 3000 cells/µL                                                             |  |  |  |
|                | or                                                                                  |                                                                          |                                                                           |  |  |  |
|                | Changes in leukocyte esterase strip                                                 | + or ++                                                                  | + or ++                                                                   |  |  |  |
|                | 3. Elevated SF PMN %                                                                | 90%                                                                      | 80%                                                                       |  |  |  |
|                | 4. Positive histologic analysis of the periprosthetic tissue                        | > 5 neutrophils per high-power<br>field in 5 high-power<br>fields (×400) | > 5 neutrophils per high-power<br>field in 5 high-power<br>fields (× 400) |  |  |  |
|                | 5. A single positive culture                                                        |                                                                          |                                                                           |  |  |  |



CRP C-reactive protein, ESR sedimentation rate, SF WBC synovial fluid white blood cell, SF PMN synovial fluid neutrophil differential



In the absence of a test with absolute accuracy, the diagnosis of a clinical condition needs to rely on a combination of criteria

Evidence-based, weight-adjusted scoring system for the definition of PJI of hip and knee

The new criteria demonstrated a higher sensitivity of 97.7% compared to the MSIS (79.3%) and International Consensus Meeting definition (86.9%), with a similar specificity of 99.5%





#### Table 1

#### Characteristics of Patients Who Were Included in the Developmental Model (n = 1504).

| Variable                               | Overall $(n = 1504)$ | PJI Cohort (n = 684) | Aseptic Cohort (n = 820) | P Value            |
|----------------------------------------|----------------------|----------------------|--------------------------|--------------------|
| Age (y)                                | 65.4 (10.9)          | 65.9 (11.0)          | 64.9 (10.8)              | 070                |
| Gender (male)                          | 718 (47.7%)          | 366 (53,5%)          | 352 (42.9%)              | <.001ª             |
| Race (white)                           | 1270 (84,4%)         | 569 (83,2%)          | 70 (85.5%)               | .05                |
| Joint (knee)                           | 841 (55.9%)          | 409 (59.8%)          | 432 (52.7%)              | 6003               |
| Time from the most recent surgery (yr) | 6.0 (8.7)            | 4.3 (9.3)            | 7.4 (7.9)                | <.001ª             |
| Most recent surgery-revision procedure | 416 (27.7%)          | 284 (41.5%)          | 132 (16.1%)              | <.001ª             |
| Body mass index (kg/m <sup>-</sup> )   | 31.1 (6.8)           | 31.4 (7.5)           | 30.9 (6.1)               |                    |
| Charlson Comorbidity Index (mean)      | 1.80 (1.8)           | 2.2 (1.7)            | 1.3 (1.8)                | <001               |
| History of rheumatoid arthritis        | 99 (6.6%)            | 62 (9.1%)            | 37 (4.5%)                | <001 <sup>a</sup>  |
| History of malignancy                  | 70 (4.7)             | 57 (8.3%)            | s13 (1.6%)               | <.001 <sup>a</sup> |
| History of diabetes                    | 261 (17.4%)          | 152 (22.2%)          | 109 (13,3%)              | <.001ª             |

Data are presented as mean (standard deviation) or number (%); kilogram (kg); meter (m); year (yr).

PJI, periprosthetic joint infection.

<sup>a</sup> Statistically significant.

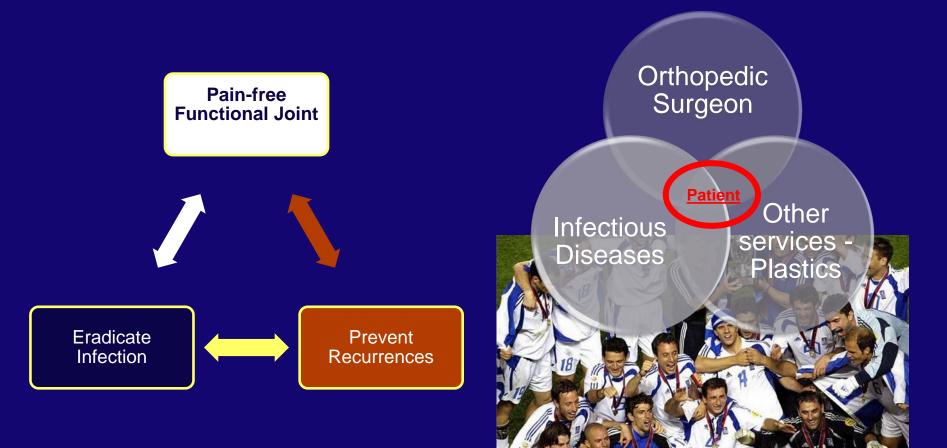


| Major criteria (at least one of the following)                                             | Decision |  |
|--------------------------------------------------------------------------------------------|----------|--|
| Two positive cultures of the same organism                                                 | Infected |  |
| Sinus tract with evidence of communication to the joint or visualization of the prosthesis |          |  |

|          | Minor Criteria                    | Score | Decision                                          |
|----------|-----------------------------------|-------|---------------------------------------------------|
| Ę        | Elevated CRP <u>or</u> D-Dimer    | 2     |                                                   |
| Serum    | Elevated ESR                      | 1     | ≥6 Infected<br>2-5 Possibly Infected <sup>a</sup> |
| Synovial | Elevated synovial WBC count or LE | 3     |                                                   |
|          | Positive alpha-defensin           | 3     |                                                   |
|          | Elevated synovial PMN (%)         | 2     | 0-1 Not Infected                                  |
|          | Elevated synovial CRP             | 1     |                                                   |

| Intraoperative<br>Diagnosis | Inconclusive pre-op score <u>or</u> dry tap <sup>a</sup> | Score | Decision                                                |
|-----------------------------|----------------------------------------------------------|-------|---------------------------------------------------------|
|                             | Preoperative score                                       | -     | ≥6 Infected                                             |
|                             | Positive histology                                       | 3     | <b>4-5 Inconclusive</b> <sup>b</sup><br>≤3 Not Infected |
|                             | Positive purulence                                       | 3     |                                                         |
|                             | Single positive culture                                  | 2     |                                                         |

Fig. 1. New scoring based definition for periprosthetic joint infection (PJI). Proceed with caution in: adverse local tissue reaction, crystal deposition disease, slow growing organisms. CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; LE, leukocyte esterase; PMN, polymorphonuclear; WBC, white blood cell. <sup>a</sup>For patients with incondusive minor criteria, operative criteria can also be used to fulfill definition for PJI. <sup>b</sup>Consider further molecular diagnostics such as next-generation sequencing.




B Consider further molecular diagnostics such as next-generation sequencing

| elevated serum CRP (>1 mg/dL)                | 2 points |
|----------------------------------------------|----------|
| D-dimer (>860 ng/mL)                         | 2 points |
| erythrocyte sedimentation rate (>30 mm/h)    | 1 points |
| elevated synovial fluid WBC (>3000 cells/µL) | 3 points |
| alpha-defensin (signal-to-cutoff ratio >1)   | 3 points |
| leukocyte esterase (++)                      | 3 points |
| polymorphonuclear percentage (>80%)          | 2 points |
| synovial CRP (>6.9 mg/L)                     | 1 points |



#### Management Goals of care







#### Goals of Treatment

- Eradicate infection
- Restore function
- Alleviate pain



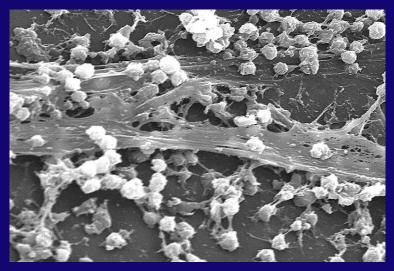
#### Temporal Stratification

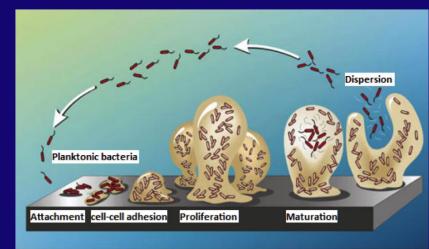
- Positive intra-operative culture (PIOC)
- Early post-operative infection (EPOI)
- Acute hematogenous infection (AHI)
- Late chronic infection (LCI)



- Systemic Factors
  - Healthy patient (A Host)
  - Compromised patient (B Host)
  - Systemic conditions
  - Local condition




#### Bacterial Considerations


- Gram positive
- Gram negative
- Polymicrobial
- Antibiotic resistance
- Non-virulent
- Virulent



# Bacteria in a biofilm

- It is impossible to remove bacteria in a biofilm. Local or systemic antibiotic treatment is not effective.
- Bacteria are protected by the biofilm from the host's defense system
- Inhibition of bacterial adhesion is regarded as the most critical step to prevent implant associated infection.









#### Treatment Alternatives

- Antibiotic suppression
- Debridement and component retention (DAIR)
- Resection arthroplasty:

Reimplantation

Arthrodesis

Flair joint



Amputation

#### **Management Options**

 Debridement, Antibiotics and Implant Retention (DAIR) of prosthesis
 +/- chronic oral antimicrobial suppresident



- Resection arthroplasty with:
  - Reimplantation
    - Two stage exchange
    - One stage exchange
    - "destination articulating spacer"
  - Arthrodesis
  - No reconstruction (flail joint)



Amputation

#### **Prosthetic Joint infection General Management Principles**

#### Late infection

- Resection arthroplasty most often
  - One-stage versus 2-staged reimplantation
- Early postoperative or Acute hematogenous infection
  - Debridement, Antibiotics, Implant Retention (DAIR)
  - +/- Chronic suppression
- Positive intra-operative cultures
  - Similar to one-stage exchange but not as extensive debridement, component retention
  - +/- Chronic suppression



# Antibiotic Suppression

#### Indications

Medically infirm
Well-fixed prosthesis
Susceptible organism
Acceptable antibiotic



- Active drainage
- Loose prosthesis
- Resistant organism



Success 27%, failure 73% (combined literature 308 cases)



# **Resection Arthroplasty-flair joint**

#### Indications

- Polyartricular rheumatoid arthritis
- Minimal ambulatory demands
- Poor soft tissues
- Insufficient bone stock
- Stage prior to knee arthrodesis
- Stage prior to reimplantation



# **Resection Arthroplasty-flair joint**

#### Contra-indications

- Single joint disease
- High ambulatory demands



# **Resection Arthroplasty-flair joint**

#### • Technique

- Implant removal and meticulous debridement
- Suture apposition of bone ends
- Prolonged immobilization (6-12months)
- Continued bracing thereafter
- Success 73%, failure 27% (combined literature 85 cases)
- (75% satisfied, 83% instability, 20% brace, 20% persistent drainage, 13% nonambulatory, 17% subsequent arthrodesis)



# Amputation

#### Indications

- Non-ambulator
- Massive bone loss
- Severe pain
- Persistent infection
- Life-threatening sepsis





### Infected TKA Amputation







#### **Knee Arthrodesis**





#### Arthrodesis

#### Indications

- Unilateral disease
- Resistant organism(s)
- Failed attempted reimplantation
- Poor soft tissue coverage
- Absent extensor mechanism
- Contra-indications
  - Contralateral knee arthrodesis or amputation
  - Ipsilateral hip or knee disease
  - Several segmental bone loss







# Acute Debridement & Component Retention

Indications

- Acute infection(<72 hrs)</li>
- Sensitive gram positive organism
- Well-fixed prosthesis
- Good soft tissues
- Contra-indications
  - Chronic infections(>2 weeks)
  - Resistant organism
  - Loose prosthesis
  - Poor soft tissues

•Success 29%, failure 71% (combined literature 377 cases)

•Timing of debridement:

<2wks 60% success

>2 wks 20% success

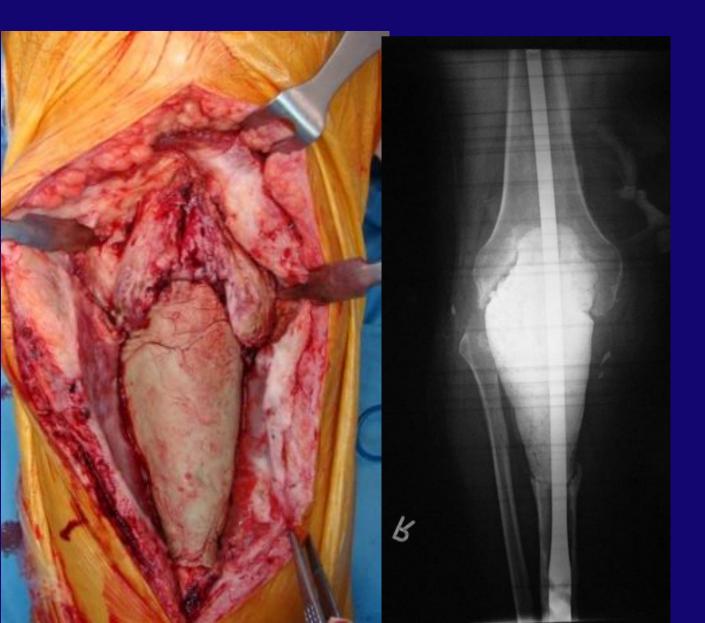


### **Re-Implantation**

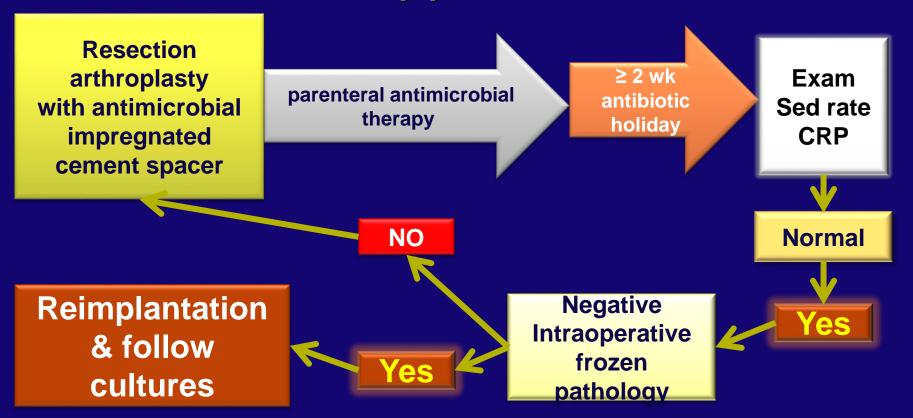
- One- stage Re-Implantation
  - Sensitive organism
  - Intact soft tissues
  - Overall 77% success rate
- Two- stage Re-Implantation (using antibiotic PMMA)
  - Resistant or virulent organism
  - Soft tissue defect
  - Overall >90% success rate
- Many different protocols and approaches employed by various authors



# "Spacers" : temporary functional reconstruction


- Local antibiotic deliveryextremely high local concentrations
- Obliterate dead space
- Simultaneously preserve space for definitive reconstruction
- PMMA-static
- PMMA-articulating
- Composite metal, PMMA







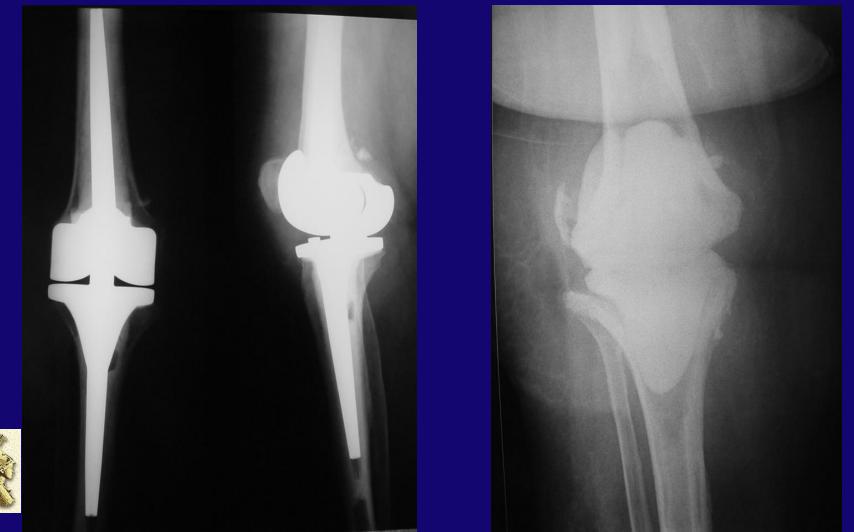

# 1<sup>nd</sup> Stage – Debridement - Spacer



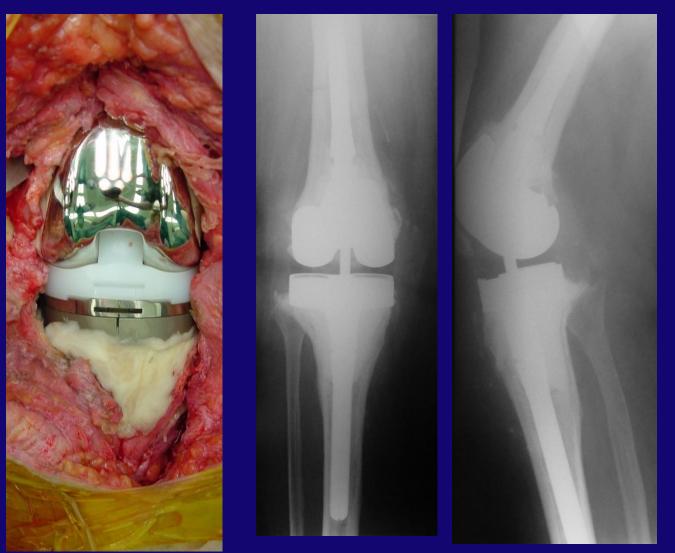
# Classic – 2-staged exchange approach






#### Outcomes of PJI over time 2000 - 2016

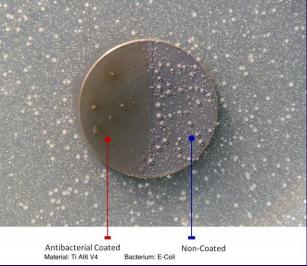
- Retrospective 17 years 2000-2016 (550 pts)
- 2-stage and DAIR (Debridement, Antibiotics, Implant Retention)
  - 123 patients not included as they did not have re-implantation
- Minimum 1 year follow-up
- Overall 2-stage failure rate 19.8%
- No difference in outcomes over 17 years adjusted to age, sex, comorbidities
- How can we improve outcomes?


Goswami et al. MSIS. 2019



#### Infected TKA 2 Stage Re-implantation Staph aureus MRSA




# Infected TKA 2 Stage Re-implantation



### Silver-coated megaprostheses

 Among metals with antimicrobial activity, silver (in particular free silver ions) has broad-spectrum antimicrobial activity and lower toxicity to cells.

 In experimental studies, silvercoated megaprostheses prove their effectiveness in reducing infection rates after artificial colonization.





#### Silver-coated vs Titanium megaprostheses

- 51 pts, silver-coated megaprosthesis
  - proximal femur, n = 22; proximal tibia, n = 29
- 74 pts , uncoated titanium megaprosthesis
  - proximal femur, n = 33; proximal tibia, n = 41
- The infection rate
  - 17.6% in the titanium group
  - 5.9% in the silver group
- 38.5% of pts in the titanium group with infection had amputation



Hardes et al, J Surg Oncol. 2010

# Silver-coated megaprostheses

- Silver compounds are poorly water soluble, resulting in the release of low concentrations of silver ions into the surrounding medium and blood. Local or systemic side effects were not observed.
- The future will no doubt see technical advances for infections of tumor prostheses in areas such as microbiological diagnostics and biofilmresistant prostheses.





### Conclusions



# Infections of Orthopaedic Implants

- Recognition = Preoperative Assessment
- Planning = Evaluate Options
- Treatment = Staged Management
- Reconstruction = Patient-matched, Surgeon, Institution



- Atraumatic approach
- Complete debridement
  - All involved material-bone, soft tissue, implants
  - Dead space management



- Temporary functional reconstruction (spacers)
  - Local antibiotic delivery-extremely high local concentrations
  - Obliterate dead space.
  - Simultaneously preserve space for definitive reconstruction
  - Maintain ligament balance and soft tissue envelope
  - PMMA-static
  - PMMA-articulating
  - Composite metal, PMMA



- Temporary functional reconstruction Functional spacers
  - Immediate mobilization
  - Facilitates rehabilitation
  - Facilitates nursing care
  - Improved pain management



#### Definitive reconstruction

- Resection Arthroplasty
- Amputation
- Arthrodesis
- Arthroplasty
- Composite Spacers PMMA, metal, bone



# **Decision Making Process**

# Define goals 'Begin with the end in mind'



# **Decision Making Process**

# Delineate options

- Patient aspects
- Surgeon capabilities
- Institutional considerations



# **Decision Making Process**

# Match treatment option with specific patient



# fracture-related infection (FRI)









Archives of Orthopaedic and Trauma Surgery (2020) 140:1013–1027 https://doi.org/10.1007/s00402-019-03287-4

#### **ORTHOPAEDIC SURGERY**



# General treatment principles for fracture-related infection: recommendations from an international expert group

Willem-Jan Metsemakers<sup>1</sup> · Mario Morgenstern<sup>2</sup> · Eric Senneville<sup>3</sup> · Olivier Borens<sup>4</sup> · Geertje A. M. Govaert<sup>5</sup> · Jolien Onsea<sup>1</sup> · Melissa Depypere<sup>6</sup> · R. Geoff Richards<sup>7</sup> · Andrej Trampuz<sup>8</sup> · Michael H. J. Verhofstad<sup>9</sup> · Stephen L. Kates<sup>10</sup> · Michael Raschke<sup>11</sup> · Martin A. McNally<sup>12</sup> · William T. Obremskey<sup>13</sup> · On behalf of the Fracture-Related Infection (FRI) group<sup>1</sup>

phonuclear neutrophils, HPF high-power field

Archives of Orthopaedic and Trauma Surgery (2020) 140:1013–1027

| Table 1 Diagnostic criteria for           FRI [3, 4] | Confirmatory criteria                                                                                                                               | Suggestive criteria                                                                                                                         |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | Clinical signs                                                                                                                                      | Clinical signs                                                                                                                              |
|                                                      | Fistula                                                                                                                                             | Local/systemic (e.g. local redness, swelling, fever)                                                                                        |
|                                                      | Sinus                                                                                                                                               | New-onset joint effusion                                                                                                                    |
|                                                      | Wound breakdown<br>Purulent drainage or the presence of pus                                                                                         | Persistent, increasing or new-onset wound drainage                                                                                          |
|                                                      | Microbiology                                                                                                                                        | Laboratory signs                                                                                                                            |
|                                                      | Phenotypically indistinguishable pathogens<br>identified by culture from at least 2 separate<br>deep tissue/implant specimens                       | Increased serum inflammatory markers (ESR, WBC, CRP)                                                                                        |
|                                                      | Histopathology<br>Presence of microorganisms in deep tissue<br>specimens, confirmed by using specific<br>staining techniques for bacteria and fungi | Radiological and/or nuclear imaging signs microbiology<br>Pathogenic microorganism identified from a single deep<br>tissue/implant specimen |
|                                                      | Presence of > 5 PMNs/HPF in chronic/late-<br>onset cases (e.g. fracture nonunion) [5]                                                               |                                                                                                                                             |

1016

#### Table 2 Primary aims for the surgical treatment of FRI [2]

- 1. Fracture consolidation
- Eradication of infection as the final outcome (in certain cases, initial suppression of infection until fracture consolidation is achieved)
- 3. Healing of the soft-tissue envelope
- 4. Restoration of function
- 5. Prevention of chronic infection/osteomyelitis





"The entire implant should be considered infected with a biofilm covering through its entire length, width and depth..."

"Fracture healing will not take place in presence of infection without mechanical stability..."

YES  $\rightarrow$  Retain until bridging  $\rightarrow$  Supression

Stable implant

 $NO \rightarrow Remove and Ex-Fix \rightarrow Eradication$ 

AO Principles of Fracture Management \_ Acute and chronic infections (2017)





"The entire implant should be considered infected with a biofilm covering through its entire length, width and depth..."

"Fracture healing will not take place in presence of infection without mechanical stability..."

YES  $\rightarrow$  Retain until bridging  $\rightarrow$  Supression

Stable implant

 $NO \rightarrow Remove and Ex-Fix \rightarrow Eradication$ 

AO Principles of Fracture Management \_ Acute and chronic infections (2017)



### **AO Principles**

Infected Intramedullary nails



Retain , if stable / bridging / sensitive micro  $\rightarrow$  In the end remove nail and ream

Remove and ream the canal 0.5-1.5mm to a distal opening (RIA : Reamer – Irrigator – Aspirator)

One stage nail exchange

Nail

Two-stage nail exchange → antibiotic cement beads / antibiotic loaded nail + Ex-Fix

AO Principles of Fracture Management \_ Acute and chronic infections (2017)





**Injury** Volume 48, Issue 7, July 2017, Pages 1616-1622

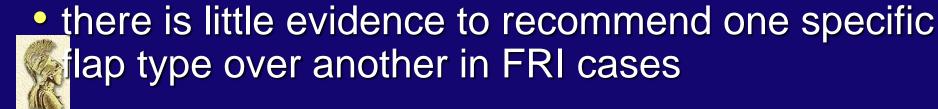


Full length article

Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis

Kai Tong <sup>a</sup>, Ziyi Zhong <sup>a</sup>, Yulan Peng <sup>b</sup>, Chuangxin Lin <sup>c</sup>, Shenglu Cao <sup>a</sup>, YunPing Yang <sup>a</sup>, Gang Wang <sup>a</sup> pprox 🖾

In the treatment of segmental lower extremity bone defects following posttraumatic osteomyelitis, both IBT and MT can lead to satisfactory bone results while MT had better functional results, especially in femoral cases.


IBT should be preferred in cases of limb deformity and MT may be a better choice in

cases of periarticular bone defects."



# Soft tissue management

- In cases where the soft tissue is severely compromised, a two-stage procedure may be necessary. However, if possible, a one-stage procedure can be considered and is often possible in chronic/late onset infections
- Local muscle flaps are useful in the proximal tibia and distal femur but the lower third of the tibia will require free tissue transfer.



# negative pressure wound therapy (NPWT)

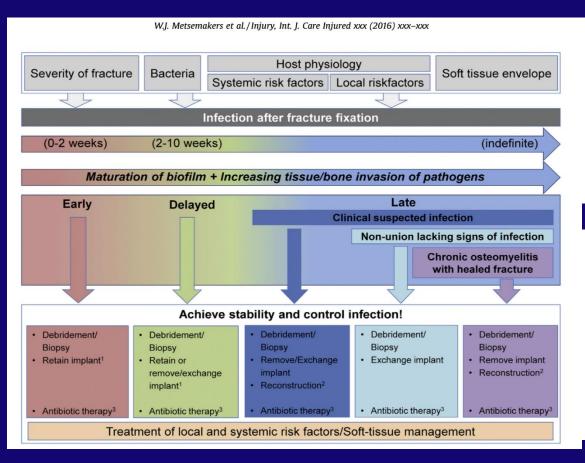
- should only be used as a temporary bridge to definite soft tissue coverage. It should not be used for more than approximately 1 week and cannot serve as an alternative to definitive soft tissue reconstruction in FRI.
- Prolonged NPWT may lead to colonization with resistant organisms and possibly increased infection rates



## **AO Principles**

#### Debridement






AO

a Debrided wound covered with a VAC dressing and adhesive seal
 b Granulated wound ready for skin graft



### FRI MANAGEMENT APPROACH SUMMARY



|          |                                                  | -     |
|----------|--------------------------------------------------|-------|
|          | Contents lists available at ScienceDirect        |       |
| A A A A  |                                                  | Injur |
|          | Injury                                           |       |
| Le la    |                                                  |       |
| ELSEVIER | journal homepage: www.elsevier.com/locate/injury | No. 1 |
|          |                                                  |       |

#### Review

Infection after fracture fixation: Current surgical and microbiological concepts

W.J. Metsemakers<sup>a,\*</sup>, R. Kuehl<sup>b</sup>, T.F. Moriarty<sup>c</sup>, R.G. Richards<sup>c</sup>, M.H.J. Verhofstad<sup>d</sup>, O. Borens<sup>e</sup>, S. Kates<sup>f</sup>, M. Morgenstern<sup>g</sup>

#### Table 4

5

Factors favoring implant removal and exchange.

| l. | Nail osteosynthesis <sup>a</sup>                                                    |
|----|-------------------------------------------------------------------------------------|
| 2. | Unstable osteosynthesis or insufficient fracture reduction <sup>a</sup>             |
| 3. | Compromised soft-tissue envelope, which does not allow sufficient wound closure     |
| 1. | Compromised host physiology (alcoholism, diabetes, vascular insufficiency, smoking) |
| 5. | Difficult to treat pathogen <sup>b</sup>                                            |
|    |                                                                                     |

<sup>a</sup> Exchange/removal strongly recommended.

<sup>b</sup> In general not available for primary revision since pre-operative pathogen identification often not possible (like in PJI by joint aspiration), if in retention of implant was chosen and microbiology analysis detect postoperatively a difficult to treat pathogen, removal of the implant should strongly be considered.



# ATTIKON UNIVERSITY HOSPITAL Athens Medical School Department of Orthopaedics



# THANK YOU

