Eวvıкóv каı Калобıธт Пaveлtotท́utov Aวๆขผ́v

KaӨŋүๆтท́s Гıஸ́pyos O．$\Delta \eta \mu$ о́тоu入os

A＇Пaveтıттףиıкки́ Пvєu Іатрıки́ ミхо入и́ EӨvıкои́ каı Kаттоঠıбтрıакои́ Паvعтıбтпиíou AӨnvш́v gdimop＠med．uoa．gr

Any role for old antibiotics? Reintroduced old antibiotics

- Colistin
- Fosfomycin
- Minocycline
- Temocillin
- Isepamicin
- Mecillinam
- Nitrofurantoin
- Chloramphenicol
- Trimethoprimsulfamethoxazole

Any role for old antibiotics?
 Colistin: Rapidly Desired Plasma Concentrations

Time aftee first dose (hours)
Concentration-dependent with time-dependence

- fAUC/MIC
- Post-antibiotic effect
- With a CMS loading dose of 480 mg (6 MU) it may take several hours to achieve effective plasma colistin concentrations
- Increase LD to 9 MU

FIG. 4. Modelpredicted CMS (A) and colistin (B) concentrations in a typial paient following the uss of the current dosing regimen (3MU as 115 -min infusion of CMS every $8 \mathrm{~h} \mid$ $98 \mathrm{~h} \mid$) and alternative dosing regimens with loading doses of 9 or 12 MU CMS as infusions of 15 min or 2 h and a maintenance dose of 45 MU CMS erery 12 h (q12h).

Any role for old antibiotics? Recently Updated EMA \& US FDA

Creatinine Clearance	EMA	US FDA
$(\mathrm{mL} / \mathrm{min})$	Daily Dose $^{\mathrm{a}}$	Daily Dose $^{\mathrm{b}}$
≥ 80	9 MIU $^{\mathrm{c}}(\sim 300 \mathrm{mg}$ CBA $)$	$2.5-5 \mathrm{mg} \mathrm{CBA} / \mathrm{kg}$
50 to <80	9 MIUc $^{\mathrm{c}}(\sim 300 \mathrm{mg} \mathrm{CBA})$	$2.5-3.8 \mathrm{mg} \mathrm{CBA} / \mathrm{kg}$
30 to <50	$5.5-7.5 \mathrm{MIU}(\sim 183-250 \mathrm{mg} \mathrm{CBA})$	$2.5 \mathrm{mg} \mathrm{CBA} / \mathrm{kg}$
10 to <30	$4.5-5.5 \mathrm{MIU}(\sim 150-183 \mathrm{mg} \mathrm{CBA})$	1 mg CBA/kg
<10	$3.5 \mathrm{MIU}(\sim 117 \mathrm{mg} \mathrm{CBA})$	Not stated

CBA, colistin base activity; MIU, million international units.
aThe European Medicines Agency (EMA) expressed doses in terms of MIU.
The EMA doses have been converted to approximately equivalent doses expressed as milligrams of CBA, and these are shown in parentheses
${ }^{\text {b }}$ The US Food and Drug Administration (FDA)-approved product label indicates that in obese individuals
The dosage should be based on ideal body weight.
c The EMA-approved product label indicates that daily doses up to 12 MIU (approximately 400 mg CBA) may be required in patients with good renal function in some cases.
dThe FDA-approved product label states 1.5 mg CBA/kg every 36 hours, which has been converted in the table to the corresponding daily rate.

Any role for old antibiotics?
Colistin Dosing in CRRT

1. Colistin is substantially removed from the circulation in critically ill patients undergoing CVVHDF
Markou N, et al. J Antimicrob Chemother 2012; 67: 2459-62
2. Challenge for higher colistin dosage in critically ill patients receiving CVVHDF \rightarrow LD of 12 MU CMS appears more appropriate, whilst a CMS maintenance dosage of at least 6.5-7.5 MU q12h
Karaiskos I et al. Int J Antimicrob Agents 2016;48(3):337-41
3. Polymyxin B unknown pharmacokinetic profile

Any role for old antibiotics? Fosfomycin

Phosphonic antibiotic

- Hydrophilic, MW 138 Da, Broad spectrum
- 50% excreted in urine unchanged
- T1/2 - 4-8h in plasma (renal failure $>50 \mathrm{~h}$)
- Inhibition of enzyme involved in peptidoglycan synthesis
- Negligible protein binding
- Available in 2 dose forms
\checkmark Oral : fosfomycin tromethamine (trometamol)
\checkmark Parenteral : fosfomycin disodium penetrates most tissues well including CSF (although reduced activity), lungs, abscesses
- Dose
\checkmark Oral : a single dose of 3 grs (Additional doses may be used in difficult eradication of infection
$\checkmark \quad$ IV : wide variation for CRE infections ranging 12-24 g daily (3 or 4 times/d)

Any role for old antibiotics?
 Fosfomycin properties and safety

Registration : IV not registered in many countries

Susceptible pathogens

- Staphylococci (incl MRSA) and Enterococci, Heamophilus spp, Enterobacteriaceae (Klebsiella spp, Enterobacter, Serratia spp.)
- Acinetobacter spp. and Pseudomonas spp. ?????
- Highly variable MICs
- EUCAST Resistant breakpoint $32 \mathrm{mg} / \mathrm{L}$

PDs : Optimal PDs are unclear

- a time-dependent agent ?, fAUC/MIC is most predictive of efficacy
- may differ by species

Resistance to fosfomycin

- is suppressed by combining fosfomycin with other agents

SAFETY

- Not nephrotoxic
- IV \rightarrow each 1 g contains 330 mg (14.4 mEq) sodium
- IV \rightarrow hypokalaemia (26\%)

EOvikóv кои
 Пavertacníuov Aaquผ́v

Any role for old antibiotics?
 Fosfomycin

Extracellular concentrations in lung tissue of septic patients
Microdialysis technique/probe into healthy and infected lung tissue
A single intravenous dose of 4 g of fosfomycin was administered

Healthy lungs		Infected lungs	
Mean C(max)	$131.6+/-110.6 \mathrm{mg} / \mathrm{L}$	Mean C(max)	$107.5+/-60.2 \mathrm{mg} / \mathrm{L}$
$\mathrm{T}(\mathrm{max})$	$1.1+/-0.4 \mathrm{~h}$	$\mathrm{~T}(\mathrm{max})$	$1.4+/-0.5 \mathrm{~h}$
AUC(0-4)	$242.4+/-101.6 \mathrm{mgxh} / \mathrm{L}$	AUC(0-4)	$203.5+/-118.4 \mathrm{mgxh} / \mathrm{L}$
AUC(0-infinity)	$367.6+/-111.9 \mathrm{mgxh} / \mathrm{L}$	AUC(0-infinity)	$315.1+/-151.2 \mathrm{mgxh} / \mathrm{L}$.
AUC(0-infinity) L / AUC(0-infinity) PI	$0.63+/-0.31$	$0.53+/-0.31$	

Any role for old antibiotics?
 Fosfomycin: Dosing and Creatinine Clearance

CrCL (ml/min)	Dose	Interval
>40	6 g	q 6 h
$40-20$	4 g	q 12 h
$20-10$	4 g	q 24 h
≤ 10	4 g	q 48 h

Fosfomycin is actively eliminated by hemodialysis and largely retained between sessions.
IV administration of $\mathbf{2 - 4} \mathbf{g}$ after dialysis is proposed.
Bouchet JL Clin Nephrol 1985; 23: 218

A regimen of 8.0 g of fosfomycin every 12 h is proposed for patients undergoing CVVH. Aдทváv

Any role for old antibiotics?
 Fosfomycin : How we start consider it ?

A randomly selected sample from septic ICU patients

- 30 Klebsiella pneumoniae
- 30 Pseudomonas aeruginosa
- 30 Acinetobacter baumannii

Fosfomycin MIC for each isolate

- was determined by the agar dilution method

Provisional susceptibility breakpoint $\leq 64 \mu \mathrm{~g} / \mathrm{ml}$ (2008)

Antimicrobial susceptibility of multidrug-resistant Gram negative bacteria to fosfomycin
M. E. Falagas - M. D. Kanellopoulou -
D. E. Karageorgopoulos - G. Dimopoulos -
P. I. Rafailidis - N. D. Skarmoutsou - E. A. Papafrangas Aəฯขต́v

Any role for old antibiotics?
 Fosfomycin : How we start to consider it ?

Fosfomycin : in vitro activity

K. pneumoniae	P. aeruginosa	A. baumannii
All isolates were ESBL and MBL (bla vim $_{\text {- }}$) producers	All isolates were ESBL producers	
MIC : 8-64 $\mu \mathrm{g} / \mathrm{ml}$	MIC: 4 ->512 $\mu \mathrm{g} / \mathrm{ml}$	MIC: $64->512 \mu \mathrm{~g} / \mathrm{ml}$
MIC : $8-64 \mu \mathrm{~g} / \mathrm{ml}$ $\mathrm{MIC}_{50} 16 \mu \mathrm{~g} / \mathrm{ml}$ MIC $_{90} 32 \mu \mathrm{~g} / \mathrm{ml}$	$\mathrm{MIC}_{50} 32 \mu \mathrm{~g} / \mathrm{ml}$ MIC $_{90} 128 \mu \mathrm{~g} / \mathrm{ml}$	MIC $_{50} 256 \mu \mathrm{~g} / \mathrm{ml}$ MIC $_{90}>512 \mu \mathrm{~g} / \mathrm{ml}$
None of the isolates was resistant	20% of the isolates were resistant to fosfomycin	Non active

Any role for old antibiotics?
 Fosfomycin IV by treatment indication and pathogen

IV fosfomycin by treatment indication

Numbers of microbiological isolates reported by pathogen.

Any role for old antibiotics? Fosfomycin : FOREST STUDY

Bacteraemic UTIs by ESBL producing Escherichia coli

Multicentre, open-label, phase III RCT

- IV fosfomycin (4 g/6 h) vs meropenem (1 g/8 h)
- a change to oral therapy is permitted after 5 days in both arms, in accordance with predetermined options
- The main objective is to demonstrate clinical non-inferiority of IV fosfomycin with regard to meropenem for treating bacteraemic UTIs caused by ESBL-EC
- Secondary objectives include the study of fosfomycin concentrations in plasma and the impact of both drugs on intestinal colonisation by multidrug-resistant Gram- negative bacilli. Maventatnúuov Aaqućv

Any role for old antibiotics? Fosfomycin : ZEUS STUDY

Hospitalized patients with documented or suspected cUTI or Acute Pyelonephritis (>2 signs/symptoms of UTI, evidence of pyuria and >1 associated risk factor)

Figure 1. Study Design

EOT: end-offtreatment; LFU: Iate
follow-up visit; TOC: test-of-cure.

*Treatment extension up to
14 days if baseline bacteremia

 Ад»ขต่

Any role for old antibiotics? Fosfomycin : ZEUS STUDY

Microbiological eradication (m-MITT)
IV Fosfomycin: 65,8\% (121/184)
Pip/Taz: 56,2\% (100/178)
9,6 \% difference, 95% CI -1,0, 20,1

Any role for old antibiotics? Fosfomycin : ZEUS STUDY - patients with bacteremia

Адทขต́ข

Any role for old antibiotics?
 Fosfomycin against endocarditis

MRSA strain (MRSA-277H) incubated with fosfomycin and imipenem or ceftriaxone (alone or in combination) at the MIC. Fosfomycin ($4 \mathrm{~g} / \mathrm{ml}$), imipenem ($16 \mathrm{~g} / \mathrm{ml}$), and ceftriaxone ($64 \mathrm{~g} / \mathrm{ml}$) were used at the indicated concentrations.

Synergistic bactericidal combinations for MRSA and GISA experimental endocarditis

GISA-ATCC 700788 incubated with fosfomycin and imipenem or ceftriaxone (alone or in combination) at the MIC. Fosfomycin (16 $\mathrm{g} / \mathrm{ml})$, imipenem ($1 \mathrm{~g} / \mathrm{ml}$), and ceftriaxone ($128 \mathrm{~g} / \mathrm{ml}$) were used at the indicated concentrations.
 \title{
Any role for old antibiotics?
 \title{
Any role for old antibiotics?

 Fosfomycin against Cellulitis or Diabetic Foot
}

 Fosfomycin against Cellulitis or Diabetic Foot
}

Any role for old antibiotics? Fosfomycin against CNS infections

Therapy	HUB 2349 strain				ATCC 51916 strain			
group (dose in $\mathrm{mg} /$ kg/day)	initial titres (log cfu/mL)	bacterial decreases ($\Delta \log \mathrm{cfu} / \mathrm{mL}$) at 24 h	no. of animals with sterile CSF cultures at 24 h/total	PD parameter related to MIC ${ }^{\text {a }}$	initial titres ($\log \mathrm{cfu} / \mathrm{mL}$)	bacterial decreases ($\Delta \log \mathrm{cfu} / \mathrm{mL}$) at 24 h	no. of animals with sterile CSF cultures at $24 \mathrm{~h} /$ total	PD parameter related to MIC ${ }^{\text {a }}$
FOF 1200	4.55 ± 0.40	-2.46 ± 1.77	5/9	3.65	5.16 ± 0.89	$-4.29 \pm 0.86^{+}$	9/9	11.96
CRO 100	4.55 ± 0.47	-3.38 ± 1.38	8/9	5.94\%	5.23 ± 0.88	-0.75 ± 1.72	O/8	O\%
VAN 30	4.45 ± 0.55	-3.85 ± 0.73	10/10	37.82 h	5.00 ± 0.76	$-3.44 \pm 1.47^{\dagger}$	6/8	37.82 h
$\mathrm{FOF}+\mathrm{CRO}$	4.89 ± 1.02	$-4.52 \pm 0.84 *$	8/8		4.91 ± 0.78	$-4.78 \pm 0.73^{\dagger}$	8/8	
$\mathrm{FOF}+\mathrm{VAN}$	4.59 ± 0.66	$-4.30 \pm 0.97 *$	8/8		4.85 ± 0.59	$-4.23 \pm 0.63^{\dagger}$	8/8	
$\mathrm{CRO}+\mathrm{VAN}$	4.48 ± 0.57	$-4.24 \pm 0.74 *$	8/8		5.17 ± 1.14	$-4.25 \pm 1.17^{+}$	8/8	
Control	4.59 ± 1.04	0.97 ± 1.94	O/10		4.78 ± 0.84	1.12 ± 2.09	0/12	

[^0]- Fosfomycin, alone and in combination with ceftriaxoneor vancomycin, against 2 strains of Streptococcus pneumoniae HUB 2349 (fosfomycin and ceftriaxone, MICs 16 and $2 \mathrm{mg} / \mathrm{L}$), ATCC 51916 (MICs 4 and $32 \mathrm{mg} / \mathrm{L}$)
- Fosfomycin $1200 \mathrm{mg} / \mathrm{kg} /$ day, ceftriaxone $100 \mathrm{mg} / \mathrm{kg} /$ day and vancomycin $30 \mathrm{mg} / \mathrm{kg} /$ day, over 26 h .

Therapy group (dose in mg/kg/day)	HUB 2349 strain		ATCC 51916 strain	
	CSF lactate levels	CSF protein levels	CSF lactate levels	CSF protein levels
FOF 1200	4.37 ± 1.17	1.92 ± 0.87	4.41 ± 2.63	1.79 ± 0.68
CRO 100	3.20 ± 0.50	1.98 ± 1.17	6.87 ± 2.73	2.60 ± 1.00
VAN 30	3.37 ± 0.82	2.24 ± 0.99	$3.64 \pm 2.81^{+}$	1.94 ± 1.12
$\mathrm{FOF}+\mathrm{CRO}$	3.15 ± 0.73	1.67 ± 0.71	$3.93 \pm 2.70^{+}$	1.98 ± 1.30
$\mathrm{FOF}+\mathrm{VAN}$	2.92 ± 0.93	1.55 ± 0.85	$2.56 \pm 0.72^{* *}$	1.59 ± 0.87
CRO + VAN	2.93 ± 0.99	1.94 ± 0.80	$2.39 \pm 1.14^{* *}$	1.73 ± 0.94
Control	6.90 ± 5.84	2.53 ± 1.08	11.74 ± 10.34	3.45 ± 3.09

Ribes S, et al, J Antimicrob Chemother. 2006 May;57(5):931-6.

45 pts /12 ICUs with PDR/XDR
 infections [PDR 15, XDR 30]

- Mean (age 55.6 years, APACHE II
19.8, SOFA 8.6)
- Bacteremia (16/6), CVCBSIs (8), VAP (14), IAls(7)
- Sepsis, Severe Sepsis, Septic
- Microbiologically documented infections (K. pneumoniae KPC (+) 83.7\%, P. aeruginosa 35.7\%)
- IV $6 \mathrm{gr} x \mathrm{4}$ / d for a mean of 12d Plus Colistin (28 pts) and/or Tigecycline (17 pts)
Shock (21.4\%, 7.1\%, 21.4\%)

O Clinical Outcome

- Successful by day 14 in 55.8\%
pts) with PDR strains
- Failure in 27.9\%
- Relapse in 4.7%
- Superinfection in 4.7%.

O Microbiological Outcome

- Bacterial eradication in 54.8\%
- Resistance development in 4 cases.

O Main adverse event

- Reversible hypokalemia (6 pts)

Any role for old antibiotics? Fosfomycin against MDR

Any role for old antibiotics?
Fosfomycin : the right dose? Aдquév

Solid lines predicted concentrations

Crosses

observed concentrations

$12 \mathrm{~g} / 8$ hours

Dose of $8 \mathrm{~g} / \mathrm{q} 8 \mathrm{~h}$

For strains with MIC of $1 \mathrm{mg} /$ liter, the time above the MIC (TMIC) covered the entire interval between doses

Docobo-Pérez et al, Antimicrobial Agents and Chemotherapy September 2015 Volume 59 Number 9

Monotherapy and combination with meropenem and probability of target attainment of 70\% fTMIC for the fosfomycin dosing regimens of $4 \mathrm{~g} q 8 \mathrm{~h}, 6 \mathrm{~g} \mathrm{q} 6 \mathrm{~h}$, and $8 \mathrm{~g} \mathrm{q8h}$ in critically ill virtual patients.

Albiero J et al, Antimicrob Agents Chemother. 2016 Jun 20;60(7):4128-39

Any role for old antibiotics? Fosfomycin : 24g/day is enough for MDR ?

- 12 patients: $\mathrm{CL}_{\mathrm{CR}} 30-300 \mathrm{~mL} / \mathrm{min}$
- Fosfomycin : dose 3 or $4 \mathrm{~g} \times 3 \mathrm{IV}$
- Infusion in 30 minutes
- Adequate concentartions in MIC >32 mg / L but insufficient in patients with $\mathrm{CL}_{\mathrm{CR}}>200 \mathrm{~mL} / \mathrm{min}$
- Variations in PK/PDs
- Currently used doses (4gx6) probably are insufficient in patients with $\mathbf{\uparrow} \mathrm{CrCl}$
- Dose of 6 gx 6 ?
 Aaquஸ́v

Any role for old antibiotics? Fosfomycin : How to use it against MDR ?

1. Always in combination
a. With at least another active agent
2. Monitor for emergence of resistance
a. During treatment
3. Dosage adjustment
a. Is required in renal failure
4. Monitor of
a. sodium levels, especially in heart failure
b. potassium levels

Any role for old antibiotics? Minocycline

- Semisynthetic tetracycline derivative introduced in the 1960s
- Available in both oral and intravenous dosage forms
- Currently approved FDA for treatment of minocyclinesusceptible Acinetobacter species infections
- CLSI susceptibility breakpoints for Acinetobacter
- $\leq 4 \mu \mathrm{~g} / \mathrm{mL}$ for susceptibility
- $8 \mu \mathrm{~g} / \mathrm{mL}$ for intermediate and
- $\geq 16 \mu \mathrm{~g} / \mathrm{mL}$ for resistance

Any role for old antibiotics? Minocycline

Activity : Inhibits bacterial protein synthesis
a. through binding with the 30 S subunit of the bacterial ribosome
b. bacteriostatic effect
c. synergistic and bactericidal activity against MDR Acinetobacter in combination with colistin or carbapenems

Dosing
a. IV $200-\mathrm{mg}$ load, followed by $100 \mathrm{mg} / 12 \mathrm{~h}$ (not >400 mg / 24 h)
b. Renal dosing : Not required

Mechanisms of Acinetobacter resistance to minocycline
a. tet(B) efflux gene
b. plasmid- mediated ISCR2 mobile element Maventocinuov
Aəquต́v

Any role for old antibiotics?
 PKs of Minocycline

Characteristic	Value
PKs	
Peak C (200-mg load)	Mean, $4.18(2.52-6.63 \mu \mathrm{~g} / \mathrm{mL})$
Trough C (100-mg/12h)	$1.4-1.8 \mu \mathrm{~g} / \mathrm{mL}$
AUC	$67-85 \mathrm{mg} \cdot \mathrm{h} / \mathrm{L}(200-\mathrm{mg} \mathrm{IV})$
Vd	$1.3 \mathrm{~L} / \mathrm{kg}$
Plasma protein binding	76%
Metabolism	Up to 6 hepatic metabolites; some active
Half-life	$15-23 \mathrm{~h}$

Aдทváv

Any role for old antibiotics?
 PDs of Minocycline

Characteristic	Value
PDs	
	1. Primarily bacteriostatic
Microbiologic activity	2. Bactericidal in combination with
	carbapenems or colistin against Primary PD index MPC Time dependent

Any role for old antibiotics?
 Clinical experience with Minocycline

- Retrospective small studies \rightarrow Acinetobacter spp infections
- Dose $\rightarrow 100 \mathrm{mg} \times 2$ after a loading dose of 200 mg
- Monotherapy \rightarrow in S to tetracycline species
- In combination \rightarrow MDR
- VAP ${ }^{1,2,3,4}$
\checkmark Critically ill
\checkmark Successful outcomes $\rightarrow 70$-100\% (clinical and microbiological)
- Skin / soft tissue infections with/ no osteomyelitis ${ }^{3,4,5}$
- Bacteremia ${ }^{3}$
\checkmark Trauma patients

Any role for old antibiotics?
 Minocycline in vitro against Burkholderia cepacia

Аดュขผ́v

- 2,621 Burkholderia cepacia complex strains
- 1,257 CF patients.
- Susceptibility of 18 antimicrobial agents and synergy (23 combinations)
- Minocycline, meropenem, and ceftazidime
*the most active, inhibiting $38 \%, 26 \%$, and 23% of strains, respectively
*synergy was rarely noted (range, 1% to 15% of strains per antibiotic combination).

Any role for old antibiotics?
 Minocycline against biofilm

In vitro antimicrobial activity for 24 h (baseline) and durability for up to 3 weeks of different antimicrobial-coated catheters against A. baumannii, E. cloacae, and E. coli (A) and K. pneumoniae, P. aeruginosa, and S. maltophilia (B).

M/R : minocycline-rifampin, CHX/SS : chlorhexidine silver sulfadiazine CHX-M/R : chlorhexidine-minocycline- rifampin

Any role for old antibiotics? Temocillin

Ticarcillin

Temocillin

- 6- α-methoxy derivative of ticarcillin
- In vitro spectrum restricted to Enterobacteriaceae
- No activity against Gram-positives and anaerobes
- No affinity to PBP-1,-2,-3
- Tightly binds PBP5 and PBP6
- No activity against Class B metalloenzymes or some Class D enyzmes (OXA-48)
- No breakpoints from EUCAST or CLSI

Any role for old antibiotics?

Temocillin Susceptibility and PKs
EDvikóv каи

Country temocillin marketed	Sensitive	Resistant
Belgium	≤ 16	>16
UK-BSAC systemic infection	≤ 8	>8
UK-BSAC, uncomplicated UTI	≤ 32	>32
France	≤ 8	>8

- IM or IV 1-2 g every 2-3 times daily
- 80% protein binding
- Urinary recovery of unmetabolized temocillin after 24h is 72-82\%
- $500 \mathrm{mg} / \mathrm{L}$ after 500 mg bid
- Elimination half life 5 h
- Low CSF penetration
- Remains un-degraded for several days in aqueous solutions

MIC (mg/L)

Sterility rates

Any role for old antibiotics? Temocillin

EOviкóv каи
Калодтєтрико́v

- Temocillin is stable against KPC enzymes
- For success, determining factor may only be the MIC irrespective of KPC production
- Could be a therapetic option for UTI
- Peritoneal infection may also be another target
- As its parent ticarcillin can be used up to $18 \mathrm{~g} / \mathrm{d}$, higher doses of temocillin may be tested for safety

Survival

Any role for old antibiotics? Isepamicin

Belongs to the aminoglycoside group

- Is derived from gentamicin B
- theoretically, has better activity than amikacin against strains producing type 16 '- N-acetyltransferase, which has been reported to be responsible for approximately 30% of the total resistance to aminoglycosides in the USA and west Europe, particularly among Enterobacteriaceae
- Antibacterial spectrum \rightarrow Gram -) and (+) bacteria
- anaerobes, Neisseriaceae and streptococci \rightarrow to Isepamicin

Available for clinical use in Taiwan, Korea, China, India, Japan, Hong Kong, Indonesia, Malaysia, Philippines, Vietnam, Singapore, Thailand, Bahrain, Turkey, Belgium and Italy

Relevant clinical data are limited

Any role for old antibiotics? Isepamicin

- Systematic review, 14 studies
- Microbiological and clinical studies
- 4901 isolates tested
- Isepamicin \rightarrow higher in vitro activity compared with amikacin or active as amikacin
- In MDR bacteria, isepamicin appeared superior to amikacin or active as to amikacin
- Isepamicin might be active in vitro against Gram-negative bacteria with resistance to amikacin and other aminoglycosides.

Any role for old antibiotics?

Pivmecillinam / Mecillinam

A penicillin derivative : since the early 1980s for UTIs

- high concentration in the urine
- low impact on the intestinal microbiota
- inhibition of penicillin-binding protein 2 (PBP2)
- mechanisms of resistance are poorly understood
- ESBL-producing Enterobacteriaceae
- NDM and IMP producers : frequently in vitro susceptible to mecillinam while KPC and VIM producers are resistant
- Unpublished data also suggest that mecillinam is highly in vitro active against OXA-48 producers Паventatńuov Aдquต́v

Any role for old antibiotics?
 Mecillinam

- E. coli resistance levels to mecillinam (Swedish university hospital), 2011-2013.
- Range of tested E. coli per year: 22.142 to 23.951
- Number of ESBL-producing E. coli: range 637-830.

Any role for old antibiotics? Nitrofurantoin

- Nitrofurans family nitrofurantoin
- PO high urinary concentrations
- Metagenomic analysis very low impact on the faecal microbiota
- Mode of action \downarrow nitrofurans to toxic compounds that can interfere with enzymes in DNA, RNA and protein synthesis
- Mechanism of resistance : mutations in nfsA or nfsB
- Low occurrence of resistance despite high usage low fitness nfsA/nfsB mutants

Any role for old antibiotics?
Chloramphenicol

Activity against Gram (+) and (-) bacteria

* bacteriostatic
* bactericidal in high concentrations or when used against Streptococcus pneumoniae, Neisseria meningitidis or Haemophilus influenzae
* excellent tissue penetration
* achieves $30 \%-50 \%$ of the serum concentration in the CSF and therapeutic levels are also achieved in pleural, ascitic and synovial fluids
* dose adjustment is required in cases of hepatic insufficiency but not with renal insufficiency.

Any role for old antibiotics?
 Chloramphenicol

Chloramphenicol may be a useful antimicrobial agent for MDR organisms such as VRE, MRSA or MDR Gram-negative bacteria

- 3051 MSSA and MRSA isolates $\boldsymbol{\rightarrow} 96 \%$ of MSSA and 83% of MRSA isolates were susceptible to chloramphenicol.
- 413 Enterobacteriaceae isolates,
- 182 (44.1\%) R to amoxicillin/clavulanate
- 76 (18.4\%) R to chloramphenicol
- 78 VRE bacteraemias
- 51 patients (65.4\%) received chloramphenicol.
\checkmark Chloramphenicol treatment led to a favourable clinical (61.1\%) and microbiological (79.1\%) response
- Nosocomial VRE infections in 16 liver transplant recipients
- 93% were susceptible to chloramphenicol and resistance did not occur in recurrent VRE isolates.

Any role for old antibiotics?

 Trimethoprim-sulfamethoxazole (TMP-SMX)1. Inhibitis bacterial DNA synthesis through inhibition of the dihydrofolate pathway
2. Antibacterial activity against Gram (+) and bacteria
3. First-line treatment for
\checkmark uncomplicated UTIs
\checkmark skin and soft-tissue infections(SSTIs)
\checkmark CA-MRSA infections
4. In combination with daptomycin, clindamycin or vancomycin and rifampicin successful treatments for MRSA endocarditis

Any role for old antibiotics? Trimethoprim-sulfamethoxazole (TMP-SMX)

TMP-SMX against MDR Acinetobacter isolates

- Non-susceptibility for Acinetobacter spp (4\% to 98.2\%)
- Non-susceptibility for MDR Acinetobacter spp, (5.9\% to 100\%)
- Resistance of Extensively drug-resistant Acinetobacter baumannii complex (100\%)
- Carbapenem-R Acinetobacter spp.had non-susceptibility rates to TMPSMX of $>80 \%$
- Polymyxin-resistant A. baumannii showed a susceptibility rate of 54.2%
- TMP-SMX for Acinetobacter spp. infections in combination with other agents

Although TMP-SMX is not usually active against Acinetobacter spp., it might be considered in cases where there are no other options.

Any role for old antibiotics?
 Conclusions

Old antibiotics

a. Are reconsidered in clinical practice

- mainly for severe infections
- as salvage treatment (MDR)
b. Small studies with heterogenity support their use
c. Unclear PK/PDs
- Unclear the right dose mainly in MDR treatment
d. Safety
- Well tolerated

[^0]: FOF, fosfomycin; CRO, ceftriaxone; VAN, vancomycin
 Data are expressed as means \pm SD.
 ${ }^{\text {a }}$ PD parameters were $C_{\max } /$ MIC for fosfomycin; $t>$ MIC for ceftriaxone; and AUC/MIC for vancomycin
 ${ }^{2} P D$ parameters were $C_{\text {max }} / \mathrm{MiC}$ for fosfomycin; $t>0.05$ against FOF monotherapy (ANOVA test).
 ${ }^{\dagger} P<0.05$ against CRO monotherapy (ANOVA test).

