

Βιολογία Β - λεμφοκυττάρων

Σωτήρης Τσιόδρας

Innate Imm

Main scheme of secretion of antibodies

The discovery of B cell immunity

1954 - Bruce Glick, Ohio State University

Studies on the function of the bursa of Fabricius, a lymphoid organ in the cloacal region of the chicken

None of the bursectomised chickens made anti-Salmonella antibodies

Bursa was later found to be the organ in which antibody producing cells developed – antibody producing cells were thereafter called B cells Mammals do not have a bursa of Fabricius

Origin of B cells and organ of B cell maturation

B cell development starts in the foetal liver After birth, development continues in the bone marrow

B cell development in the bone marrow

Regulates construction of an antigen receptor Ensures each cell has only one specificity Checks and disposes of self-reactive B cells Exports useful cells to the periphery Provides a site for antibody production

Bone Marrow provides a MATURATION & DIFFERENTIATION MICROENVIRONMENT for B cell development

The effector functions of Abs

Abbas et al: Cellular and Molecular Immunology, 7e.

Immune effector mechanisms against extracellular pathogens & toxins NEUTRALISATION

NEUTRALISING ANTIBODIES

Effector mechanisms against extracellular pathogens OPSONISATION

Effector mechanisms against extracellular pathogens COMPLEMENT Activation

Many immune & inflammatory diseases are caused by Antibodies

- Type 1: Immediate hypersensitivity
 - IgE/Mast cells
- Type 2: Antibody mediated
 - Antibodies against cell/tissue **antigens**
- Type 3: Immune complex disease-Common phenomenon in infectious diseases

Many immune & inflammatory diseases are caused by Antibodies

•The absence of antibodies is of obvious relevance in Infectious Diseases

✓ XLA, Hyper-IgM syndromes, CVID

•All functional vaccines depend on high affinity antibodies

Complementarity determining regions = CDRs = HVRs

Beta barrels, Ig folds, Ig domains

Beta barrels, Ig folds, Ig domains

V vs. C domain

Binding of an Ag by an Ab

The small molecule concept

The small molecule concept

Human immunoglobulin genes

VDJ recombination

VDJ recombination

Heavy and light chain rearrangement is potentially wasteful

There is, therefore, only a 1:27 chance of an in frame rearrangement Out of frame rearrangements arrest further B cell maturation

B cells have several chances to successfully rearrange Ig genes

Bone Marrow

Stages of B cell development

Each stage of development is defined by rearrangements of IgH chain genes, IgL chain genes, expression of surface Ig, expression of adhesion molecules and cytokine receptors

The pre-BCR checkpoint cells not expressing pre-BCR die by apoptosis cells expressing BCR undergo positive selection

Stages of differentiation in the bone marrow are defined by Ig gene rearrangement

Ig light chain gene has not yet rearranged

B cell self tolerance: anergy

Receptor editing occurs in the BM

avoid apoptosis -modifying sequence of light chain V & J genes

XLA Brutons disease

B-cell maturation = Ig heavy-chain genes are rearranged first, followed by light-chain rearrangement In XLA, B-cell maturation stops after the initial heavy-chain gene rearrangement

because of mutations in a tyrosine kinase

The kinase is called Bruton tyrosine kinase or B-cell tyrosine kinase (BTK)

XLA Brutons disease

Diagnosis? Low Igs, Lymphocyte phenotyping->> absent Bcells, genetic testing -> BTK mutation

The pre-BCR signals constitutively

Evidence for allelic exclusion

ALLOTYPE- polymorphism in the C region of Ig – one allotype inherited from each parent

Allotypes can be identified by staining B cell surface Ig with antibodies

Suppression of H chain rearrangement by pre-B cell receptor prevents expression of two specificities of antibody per cell

Allelic exclusion is needed for efficient clonal selection

All daughter cells must express the same Ig specificity otherwise the efficiency of the response would be compromised

Suppression of H chain gene rearrangement helps prevent the emergence of new daughter specificities during proliferation after clonal selection

Allelic exclusion prevents unwanted responses

One Ag receptor per cell <u>*IF*</u> there were two Ag receptors per cell

Suppression of H chain gene rearrangement ensures only one specificity of Ab expressed per cell. Prevents induction of unwanted responses by pathogens

Signal transduction by the BCR complex

Role of CR2 & TLR in B cell activation

Functional responses induced by Agmediated cross-linking of BCR

T independent **B** cell activation

NO SIGNAL

SIGNAL TRANSDUCTION

- Multivalent structures can be T independent antigens
- Responses generally low affinity w limited class switching-short lived plasma cells

Mechanisms of T-Independent Antibody Responses

- T-independent antigens are capable of stimulating B cell proliferation and differentiation in the absence of T cell help
- Most important TI antigens are :Polysaccharides
 - :Glycolipids
 - :Nucleic acids

Haptens, antigens, immunogens

•Haptens are small molecules or moieties

•They are antigens but not immunogens

•All immunogens are antigens

•All antigens are not immunogens

Natural antibodies

- Low-affinity anti-carbohydrate antibodies
- Postulated to be produced by
 1.Peritoneal B-1 cells
 2.Marginal zone B cells in the spleen
- Protection against bacterial infections & Facilitate phagocytosis of apoptotic cells.
- Anti-ABO blood group antibodies

T independent **B** cell activation

• Cross linking of the receptor

Transduction of signals by the B cell receptor

The cytoplasmic domains of the Ig α and Ig β contain Immunoreceptor Tyrosine based Activation Motifs (ITAMS) - 2 tyrosine residues separated by 9-12 amino acids - YXX[L/V]X₆₋₉YXX[L/V]

T independent **B** cell activation

• Cross linking of the receptor

T independent **B** cell activation

• Cross linking of the receptor

The B cell co-receptor

- mlg and CD21 are cross-linked by antigen that has activated complement
- CD21 is phosphorylated and receptor-associated kinases phosphorylate CD19
- Phosphorylated CD19 activates more Src family kinases
- Ligation of the co-receptor increases B cell receptor signalling 1000 -10,000 fold

T-independent antigens

Proteins are endocytosed after they are seen by the BCR

Distinct B & T cell epitopes must be linked

Ag delivery to follicular B cells

T-B cell migration and interactions

Helper T cell activation of B cells

Events in T dependent humoral response

The germinal center in lymphoid organs

Events in T dependent humoral response

Distinct B cell subtypes mediate different types of Ab responses

B cell antigen presentation to helper T cells

Sequential T-B interactions in immunity

• T-> B – Forms extrafollicular B cell focus

• B-> T – Generates T follicular helper cells

• T-> B – Selection of high affinity B cells

Heavy chain isotype switching, memory cells constant region of HC changes IgM-IgG, affinity remains

Heavy chain isotype switching, memory cells

Affinity maturation, memory cells somatic hypermutation of CDR, 1-2/cell generation positive/clonal selection via Tfh

Overview of B-cell activation

Overview of B-cell activation

1ry vs 2ry Response

Feature	Primary response	Secondary response
Peak response	Smaller	Larger
Antibody isotype	Usually IgM > IgG	Relative increase in IgG and, under certain situations, in IgA or IgE
Antibody affinity	Lower average affinity, more variable	Higher average affinity (affinity maturation)
Induced by	All immunogens	Mainly protein antigens

Plasma cells

T dependent vs T independent

TABLE 12-2Properties of Thymus-Dependentand Thymus-Independent Antigens

	Thymus-Dependent Antigen	Thymus-Independent Antigen	
Chemical nature	Proteins	Polymeric antigens, especially polysac- charides; also glyco- lipids, nucleic acids	
Features of Antibody Response			
Isotype switching	Yes; IgG, IgE, and IgA	Little or no; may be some IgG and IgA	
Affinity maturation	Yes	No	
Secondary response (memory B cells)	Yes	Only seen with some antigens (e.g., poly- saccharides)	

- Important WBC-small lymphocytes
- Humoral immunity of adaptive immune system
- Function in the bone marrow
- Express BCR on membrane-bind Ag initiate Ab response
- Can present Ag/APC & collaborate w Tfh cells