

Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Κολιστίνη/φωσφομυκίνη παραδείγματα αναγέννησης παλαιών αντιβιοτικών για νοσοκομειακή χρήση

Prof George Dimopoulos MD, PhD, FCCP, FCCM, FECMM

Department of Critical Care, University Hospital ATTIKON National and Kapodistrian University of Athens, Medical School gdimop@med.uoa.gr

Faculty disclosure (2018)

Any role for old antibiotics?

Reintroduced old antibiotics

- Colistin
- Fosfomycin
- Minocycline
- o Temocillin
- o Isepamicin

- Mecillinam
- Nitrofurantoin
- Chloramphenicol
- o Trimethoprimsulfamethoxazole

Colistin: Rapidly Desired Plasma Concentrations

Time after first dose (hours)

Concentration-dependent with time-dependence

- fAUC/MIC
- Post-antibiotic effect
- With a CMS loading dose of 480 mg (6 MU) it may take several hours to achieve effective plasma colistin concentrations
- Increase LD to 9 MU

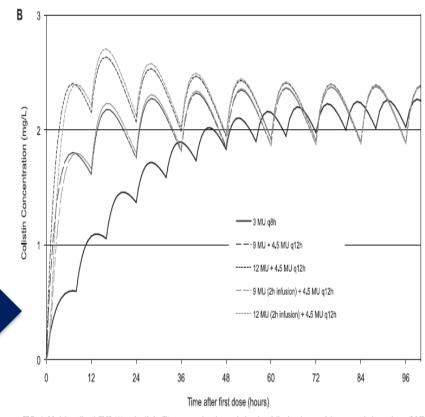


FIG. 4. Model-predicted CMS (A) and colistin (B) concentrations in a typical patient following the use of the current dosing regimen (3 MU as a 15-min infusion of CMS every 8 h [q8h]) and alternative dosing regimens with loading doses of 9 or 12 MU CMS as infusions of 15 min or 2 h and a maintenance dose of 4.5 MU CMS every 12 h (q12h).

Any role for old antibiotics? Recently Updated EMA & US FDA

Creatinine Clearance	EMA	US FDA
(mL/min)	Daily Dose ^a	Daily Dose ^b
≥80	9 MIU ^c (~ 300 mg CBA)	2.5–5 mg CBA/kg
50 to <80	9 MIU ^c (~ 300 mg CBA)	2.5–3.8 mg CBA/kg
30 to <50	5.5-7.5 MIU (~183-250 mg CBA)	2.5 mg CBA/kg
10 to <30	4.5–5.5 MIU (~150–183 mg CBA)	1 mg CBA/kg ^d
<10	3.5 MIU (~117 mg CBA)	Not stated

CBA, colistin base activity; MIU, million international units.

^aThe European Medicines Agency (EMA) expressed doses in terms of MIU.

The EMA doses have been converted to approximately equivalent doses expressed as milligrams of CBA, and these are shown in parentheses

^bThe US Food and Drug Administration (FDA)–approved product label indicates that in obese individuals The dosage should be based on ideal body weight.

^cThe EMA-approved product label indicates that daily doses up to 12 MIU (approximately 400 mg CBA) may be required in patients with good renal function in some cases.

^dThe FDA-approved product label states 1.5 mg CBA/kg every 36 hours, which has been converted in the table to the corresponding daily rate.

Any role for old antibiotics? Colistin Dosing in CRRT

- 1. Colistin is <u>substantially removed</u> from the circulation in critically ill patients undergoing CVVHDF

 Markou N, et al. J Antimicrob Chemother 2012; 67: 2459-62
- Challenge for higher colistin dosage in critically ill patients receiving CVVHDF → LD of 12 MU CMS appears more appropriate, whilst a CMS maintenance dosage of at least 6.5-7.5 MU q12h Karaiskos I et al. Int J Antimicrob Agents 2016;48(3):337-41
- 3. Polymyxin B unknown pharmacokinetic profile

Fosfomycin

Phosphonic antibiotic

- Hydrophilic, MW 138 Da, Broad spectrum
- 50% excreted in urine unchanged
- T1/2 4-8h in plasma (renal failure >50h)
- Inhibition of enzyme involved in peptidoglycan synthesis
- Negligible protein binding
- Available in 2 dose forms
 - ✓ Oral : fosfomycin tromethamine (trometamol)
 - ✓ Parenteral: fosfomycin disodium penetrates most tissues well including CSF (although reduced activity), lungs, abscesses
- Dose
 - ✓ Oral: a single dose of 3 grs (Additional doses may be used in difficult eradication of infection
 - ✓ IV : wide variation for CRE infections ranging 12- 24 g daily (3 or 4 times/d)

Fosfomycin properties and safety

Registration: IV not registered in many countries

Susceptible pathogens

- Staphylococci (incl MRSA) and Enterococci, Heamophilus spp, Enterobacteriaceae (Klebsiella spp, Enterobacter, Serratia spp.)
- Acinetobacter spp. and Pseudomonas spp. ?????
- Highly variable MICs
- EUCAST Resistant breakpoint 32 mg/L

PDs: Optimal PDs are unclear

- a time-dependent agent ?, fAUC/MIC is most predictive of efficacy
- may differ by species

Resistance to fosfomycin

is suppressed by combining fosfomycin with other agents

SAFETY

- Not nephrotoxic
- IV → each 1g contains 330mg (14.4 mEq) sodium
- IV → hypokalaemia (26%)

Ribes et al JAC 2006; 57: 931-6, Nau et al JAC 1995; 36: 997-1004), Drugs 1997; 53: 637-56

Any role for old antibiotics? Fosfomycin

Extracellular concentrations in lung tissue of septic patients

Microdialysis technique/probe into healthy and infected lung tissue A single intravenous dose of 4 g of **fosfomycin was administered**

Healthy lungs		Infe	ected lungs
Mean C(max)	131.6 +/- 110.6 mg/L	Mean C(max)	107.5 +/- 60.2 mg/L
T(max)	1.1 +/- 0.4 h	T(max)	1.4 +/- 0.5 h
AUC(0-4)	242.4 +/- 101.6 mgxh/L	AUC(0-4)	203.5 +/- 118.4 mgxh/L
AUC(0-infinity) 367.6 +/- 111.9 mgxh/L		AUC(0-infinity)	315.1 +/- 151.2 mgxh/L.
AUC(0-infinity) L / AUC(0-infinity) PI		0.63 +/- 0.31	0.53 +/- 0.31

Any role for old antibiotics?

Fosfomycin: Dosing and Creatinine Clearance

CrCL (ml/min)	Dose	Interval
>40	6 g	q 6h
40-20	4 g	q 12h
20-10	4 g	q 24h
≤10	4 g	q 48h

Fosfomycin is actively eliminated by hemodialysis and largely retained between sessions. IV administration of 2-4 g after dialysis is proposed.

Bouchet JL Clin Nephrol 1985; 23: 218

A regimen of 8.0 g of fosfomycin every 12 h is proposed for patients undergoing CVVH.

Gattringe R et al. JAC 2006; 58: 367

Any role for old antibiotics?

Fosfomycin: How we start consider it?

A randomly selected sample from septic ICU patients

- 30 Klebsiella pneumoniae
- 30 Pseudomonas aeruginosa
- 30 Acinetobacter baumannii

Fosfomycin MIC for each isolate

was determined by the agar dilution method

Provisional susceptibility breakpoint ≤ 64 μg/ml (2008)

Eur J Clin Microbiol Infect Dis DOI 10.1007/s10096-007-0456-4

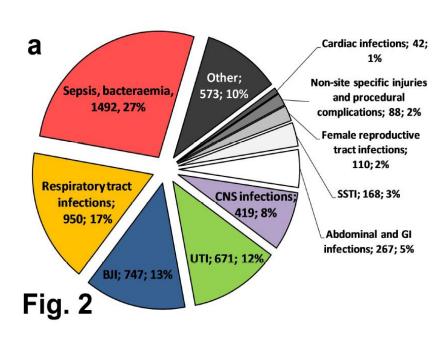
ARTICLE

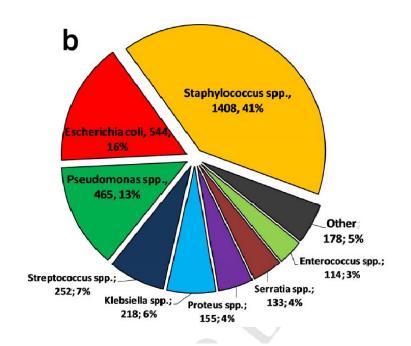
Antimicrobial susceptibility of multidrug-resistant Gram negative bacteria to fosfomycin

M. E. Falagas • M. D. Kanellopoulou • D. E. Karageorgopoulos • G. Dimopoulos • P. I. Rafailidis • N. D. Skarmoutsou • E. A. Papafrangas

Fosfomycin: How we start to consider it?

Fosfomycin: in vitro activity


K. pneumoniae	P. aeruginosa	A. baumannii
All isolates were ESBL and MBL (bla _{VIM-1}) producers	All isolates were ESBL producers	
MIC : 8-64 μg/ml	MIC:4 ->512 μg/ml	MIC: 64->512 μg/ml
MIC : 8-64 μg/ml MIC ₅₀ 16 μg/ml MIC ₉₀ 32 μg/ml	MIC ₅₀ 32 μg/ml MIC ₉₀ 128 μg/ml	MIC ₅₀ 256 μg/ml MIC ₉₀ >512 μg/ml
None of the isolates was resistant	20% of the isolates were resistant to fosfomycin	Non active



Any role for old antibiotics?

Fosfomycin IV by treatment indication and pathogen

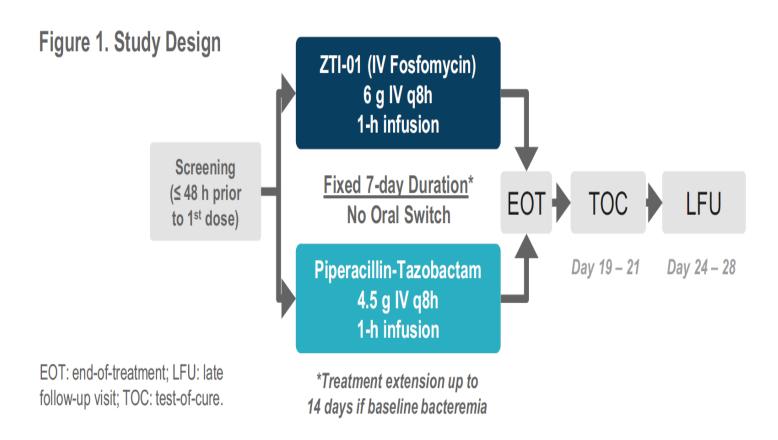
IV fosfomycin by treatment indication

Numbers of microbiological isolates reported by pathogen.

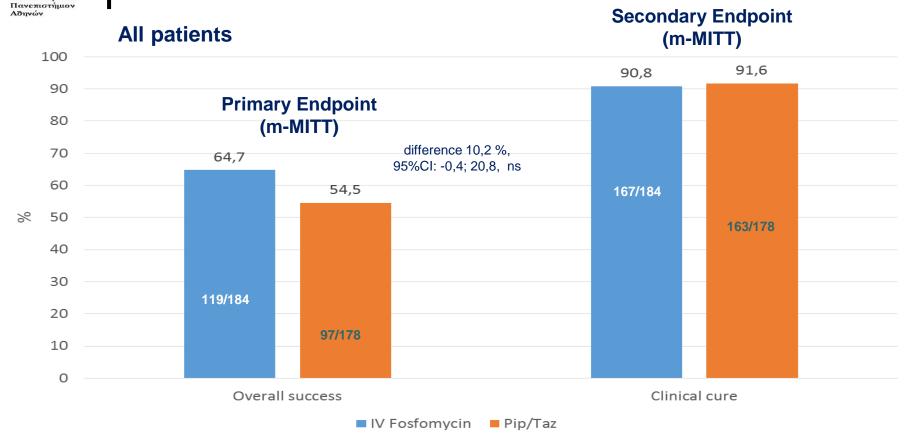
Fosfomycin: FOREST STUDY

Bacteraemic UTIs by ESBL producing Escherichia coli

Multicentre, open-label, phase III RCT


- IV fosfomycin (4 g/6 h) vs meropenem (1 g/8 h)
- a change to oral therapy is permitted after 5 days in both arms, in accordance with predetermined options
- The main objective is to demonstrate clinical non-inferiority of IV fosfomycin with regard to meropenem for treating bacteraemic UTIs caused by ESBL-EC
- Secondary objectives include the study of fosfomycin concentrations in plasma and the impact of both drugs on intestinal colonisation by multidrug-resistant Gram- negative bacilli.

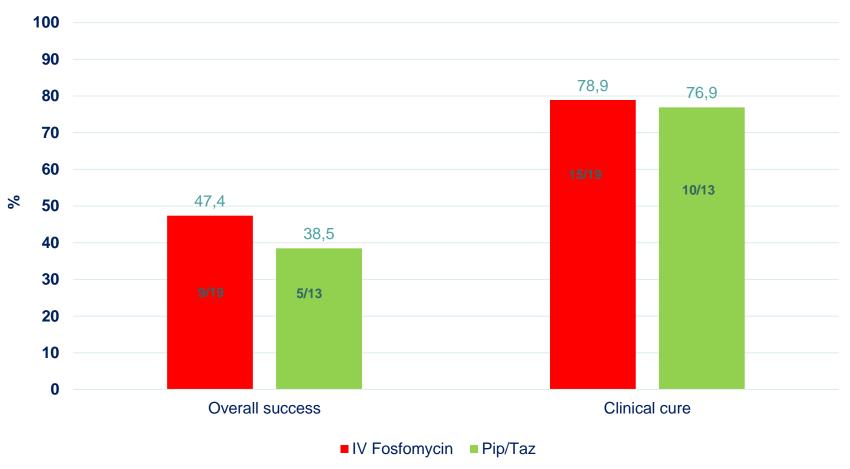
Fosfomycin: ZEUS STUDY


Hospitalized patients with documented or suspected cUTI or Acute Pyelonephritis (> 2 signs/symptoms of UTI, evidence of pyuria and >1 associated risk factor)

Fosfomycin: ZEUS STUDY

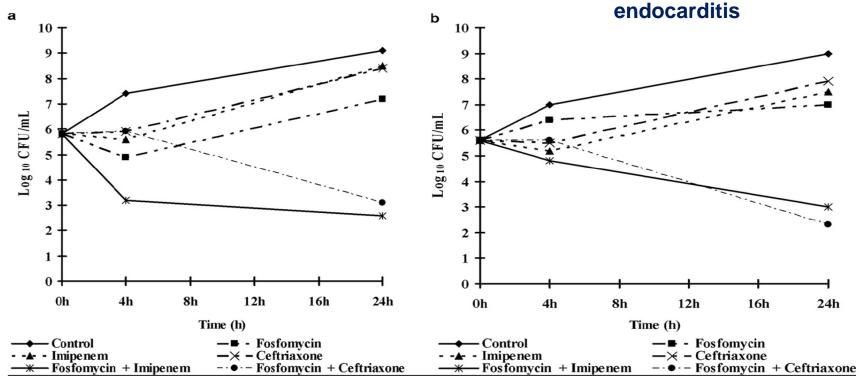
Microbiological eradication (m-MITT)

IV Fosfomycin: **65,8%** (121/184)


Pip/Taz: 56,2% (100/178) 9,6 % difference, 95% CI -1,0, 20,1

Any role for old antibiotics?

Fosfomycin: ZEUS STUDY - patients with bacteremia

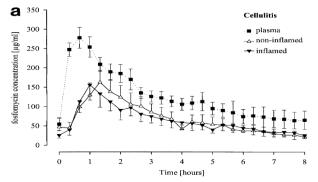


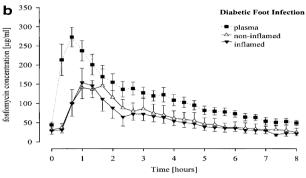
Any role for old antibiotics?

Fosfomycin against endocarditis

Synergistic bactericidal combinations for MRSA and GISA experimental

MRSA strain (MRSA-277H) incubated with fosfomycin and imipenem or ceftriaxone (alone or in combination) at the MIC. Fosfomycin (4 g/ml), imipenem (16 g/ml), and ceftriaxone (64 g/ml) were used at the indicated concentrations.


GISA-ATCC 700788 incubated with fosfomycin and imipenem or ceftriaxone (alone or in combination) at the MIC. Fosfomycin (16 g/ml), imipenem (1 g/ml), and ceftriaxone (128 g/ml) were used at the indicated concentrations.



Any role for old antibiotics?

Fosfomycin against Cellulitis or Diabetic Foot

Daily dosage

- 200 mg/kg of body weight divided into three equal i.v. doses over 30 min every 8 h.

Fosfomycin pharmad				cokinetic parameters ^b				
Fluid ^a		Patients with cellulitis				Patients with diabetic foot infection		
	C_{\max} (µg/ml)	C _{8h} (µg/ml)	$T_{\rm max}$ (h)	AUC ₀₋₈ (μg · h/ml)	C _{max} (µg/ml)	C _{8h} (µg/ml)	$T_{\rm max}$ (h)	AUC ₀₋₈ (μg·h/ml
Plasma	344 ± 53.6	65.0 ± 58.4		1,050 ± 139	320 ± 67.4	49.2 ± 15.9		1,331 ± 429
s c tissue fluid								
Noninflamed Inflamed	141 ± 68.6 150 ± 70.6	22.0 ± 15.1 25.2 ± 19.2	1.13 ± 0.29 0.78 ± 0.31	742 ± 483 757 ± 492		24.8 ± 26.2 21.7 ± 13.7	1.15 ± 0.47 0.90 ± 0.22	937 ± 848 782 ± 524

Any role for old antibiotics? Fosfomycin against CNS infections

		HUB 2349	strain			ATCC 519	916 strain	
Therapy group (dose in mg/kg/day)	initial titres (log cfu/mL)	bacterial decreases (Δlog cfu/mL) at 24 h	no. of animals with sterile CSF cultures at 24 h/total	PD parameter related to MIC ^a	initial titres (log cfu/mL)	bacterial decreases (Δlog cfu/mL) at 24 h	no. of animals with sterile CSF cultures at 24 h/total	PD parameter related to MIC ^a
FOF 1200	4.55 ± 0.40	-2.46 ± 1.77	5/9	3.65	5.16 ± 0.89	$-4.29 \pm 0.86^{\dagger}$	9/9	11.96
CRO 100	4.55 ± 0.47	-3.38 ± 1.38	8/9	5.94%	5.23 ± 0.88	-0.75 ± 1.72	0/8	0%
VAN 30	4.45 ± 0.55	-3.85 ± 0.73	10/10	37.82 h	5.00 ± 0.76	$-3.44 \pm 1.47^{\dagger}$	6/8	37.82 h
FOF + CRO	4.89 ± 1.02	-4.52 ± 0.84 *	8/8		4.91 ± 0.78	$-4.78 \pm 0.73^{\dagger}$	8/8	
FOF + VAN	4.59 ± 0.66	$-4.30 \pm 0.97*$	8/8		4.85 ± 0.59	$-4.23 \pm 0.63^{\dagger}$	8/8	
CRO + VAN	4.48 ± 0.57	-4.24 ± 0.74 *	8/8		5.17 ± 1.14	$-4.25 \pm 1.17^{\dagger}$	8/8	
Control	4.59 ± 1.04	0.97 ± 1.94	0/10		4.78 ± 0.84	1.12 ± 2.09	0/12	

FOF, fosfomycin; CRO, ceftriaxone; VAN, vancomycin.

Data are expressed as means \pm SD.

- Fosfomycin, alone and in combination with ceftriaxoneor vancomycin, against 2 strains of Streptococcus pneumoniae HUB 2349 (fosfomycin and ceftriaxone, MICs 16 and 2 mg/L), ATCC 51916 (MICs 4 and 32 mg/L)
- Fosfomycin 1200 mg/kg/day, ceftriaxone 100 mg/kg/day and vancomycin 30 mg/kg/day, over 26 h.

	HUB 23	349 strain	ATCC 51916 strain		
Therapy group (dose in mg/kg/day)	CSF lactate levels	CSF protein levels	CSF lactate levels	CSF protein levels	
FOF 1200	4.37 ± 1.17	1.92 ± 0.87	4.41 ± 2.63	1.79 ± 0.68	
CRO 100	3.20 ± 0.50	1.98 ± 1.17	6.87 ± 2.73	2.60 ± 1.00	
VAN 30	3.37 ± 0.82	2.24 ± 0.99	$3.64 \pm 2.81^{\dagger}$	1.94 ± 1.12	
FOF + CRO	3.15 ± 0.73	1.67 ± 0.71	$3.93 \pm 2.70^{\dagger}$	1.98 ± 1.30	
FOF + VAN	2.92 ± 0.93	1.55 ± 0.85	$2.56 \pm 0.72*^{\dagger}$	1.59 ± 0.87	
CRO + VAN	2.93 ± 0.99	1.94 ± 0.80	$2.39 \pm 1.14*^{\dagger}$	1.73 ± 0.94	
Control	6.90 ± 5.84	2.53 ± 1.08	11.74 ± 10.34	3.45 ± 3.09	

^aPD parameters were C_{max} /MIC for fosfomycin; t > MIC for ceftriaxone; and AUC/MIC for vancomycin.

^{*}P < 0.05 against FOF monotherapy (ANOVA test).

 $^{^{\}dagger}P < 0.05$ against CRO monotherapy (ANOVA test).

Fosfomycin against MDR

45 pts /12 ICUs with PDR/XDR infections [PDR 15, XDR 30]

- Mean (age 55.6 years, APACHE II19.8, SOFA 8.6)
- Bacteremia (16 /6), CVCBSIs (8),
 VAP (14), IAIs(7)
- Sepsis, Severe Sepsis, Septic Shock (21.4%, 7.1%, 21.4%)
- Microbiologically documented infections (K. pneumoniae KPC (+) 83.7%, P. aeruginosa 35.7%)
- IV 6gr x 4/ d for a mean of 12d
 Plus Colistin (28 pts) and/or
 Tigecycline (17 pts)

O Clinical Outcome

- Successful by day 14 in 55.8% (10 pts) with PDR strains
- Failure in 27.9%
- Relapse in 4.7%
- Superinfection in 4.7%.

O Microbiological Outcome

- Bacterial eradication in 54.8%
- Resistance development in 4 cases.

O Main adverse event

Reversible hypokalemia (6 pts)

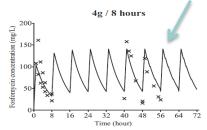
International Journal of Antimicrobial Agents 43 (2014) 52–59

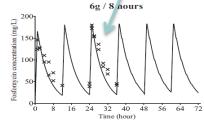
Contents lists available at ScienceDirect

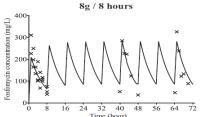
International Journal of Antimicrobial Agents

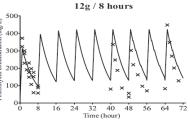
journal homepage: http://www.elsevier.com/locate/ijantimicag

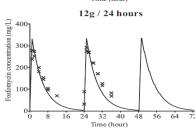
Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria

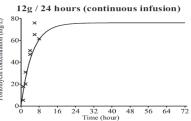

Any role for old antibiotics?

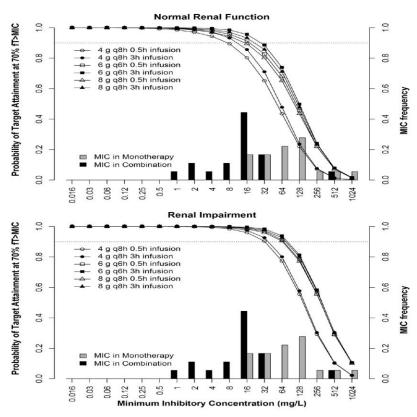

Fosfomycin: the right dose?


Solid lines Crosses


predicted concentrations


observed concentrations



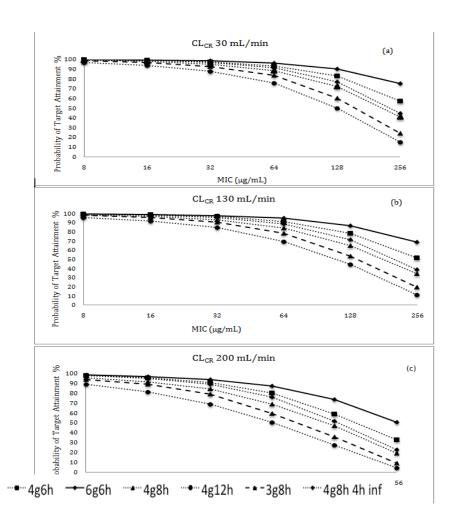


Dose of 8 g/q8h

For strains with MIC of 1 mg/liter, the time above the MIC (*T*MIC) covered the entire interval between doses

Docobo-Pérez et al, Antimicrobial Agents and Chemotherapy September 2015 Volume 59 Number 9

Monotherapy and combination with meropenem and probability of target attainment of 70% fTMIC for the fosfomycin dosing regimens of 4 g q8h, 6 g q6h, and 8 g q8h in critically ill virtual patients.


Albiero J et al, Antimicrob Agents Chemother. 2016 Jun 20;60(7):4128-39

Fosfomycin: 24g/day is enough for MDR?

- 12 patients : CL_{CR} 30-300 mL/min
 - Fosfomycin: dose 3 or 4 g x 3 IV
 - Infusion in 30 minutes
- Adequate concentartions in MIC >32 mg/L but insufficient in patients with CL_{CR} >200 mL/min
- Variations in PK/PDs
- Currently used doses (4gx6) probably are insufficient in patients with ↑CrCl
- Dose of 6 g x 6 ?

Any role for old antibiotics?

Fosfomycin: How to use it against MDR?

1. Always in combination

a. With at least another active agent

2. Monitor for emergence of resistance

a. During treatment

3. Dosage adjustment

a. Is required in renal failure

4. Monitor of

- a. sodium levels, especially in heart failure
- b. potassium levels

Any role for old antibiotics? Minocycline

- Semisynthetic tetracycline derivative introduced in the 1960s
 - Available in both oral and intravenous dosage forms
- Currently approved FDA for treatment of minocyclinesusceptible Acinetobacter species infections
- CLSI susceptibility breakpoints for Acinetobacter
 - ≤4 µg/mL for susceptibility
 - 8 µg/mL for intermediate and
 - ≥16 µg/mL for resistance

Any role for old antibiotics? Minocycline

Activity: Inhibits bacterial protein synthesis

- a. through binding with the 30S subunit of the bacterial ribosome
- b. bacteriostatic effect
- c. synergistic and bactericidal activity against MDR Acinetobacter in combination with colistin or carbapenems

Dosing

- a. IV 200-mg load, followed by 100 mg / 12 h (not >400 mg / 24 h)
- b. Renal dosing: Not required

Mechanisms of *Acinetobacter* resistance to minocycline

- a. tet(B) efflux gene
- b. plasmid- mediated ISCR2 mobile element

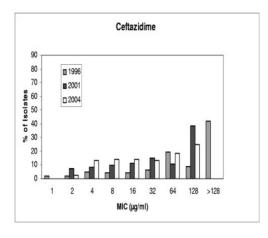
Any role for old antibiotics? PKs of Minocycline

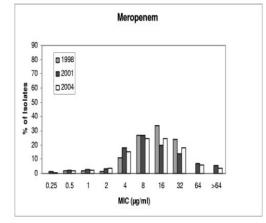
Characteristic	Value
PKs	
Peak C (200-mg load)	Mean, 4.18 (2.52- 6.63µg/mL)
Trough C (100-mg/12h)	1.4–1.8 μg/mL
AUC	67-85 mg · h/L (200-mg IV)
Vd	1.3 L/kg
Plasma protein binding	76%
Metabolism	Up to 6 hepatic metabolites; some active
Half-life	15–23 h

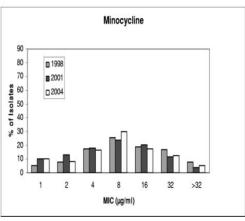
Any role for old antibiotics? PDs of Minocycline

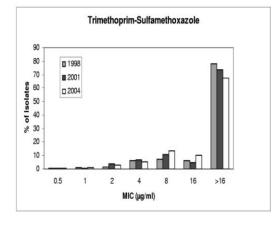
Characteristic	Value	
PDs		
	1. Primarily bacteriostatic	
	2. Bactericidal in combination with	
Microbiologic activity	carbapenems or colistin against	
	Acinetobacter baumannii	
	3. Time dependent	
Primary PD index	AUC/MIC	
MPC	1 μg/mL	

Any role for old antibiotics? Clinical experience with Minocycline


- Retrospective small studies → Acinetobacter spp infections
- Dose → 100 mg x 2 after a loading dose of 200 mg
- Monotherapy
 in S to tetracycline species
- In combination → MDR
- **V△P**1,2,3,4
 - ✓ Critically ill
 - ✓ Successful outcomes → 70-100% (clinical and microbiological)
- Skin / soft tissue infections with/ no osteomyelitis^{3,4,5}
- Bacteremia³
 - ✓ Trauma patients

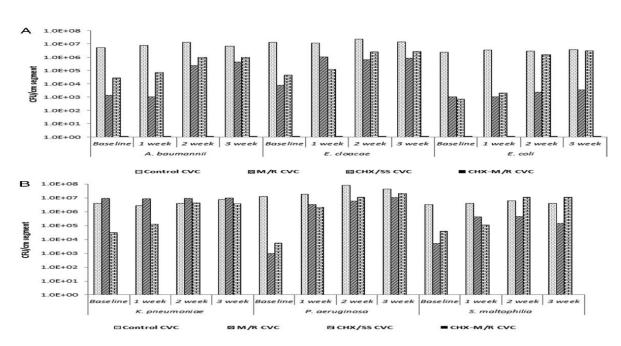





Any role for old antibiotics?

Minocycline in vitro against Burkholderia cepacia

- 2,621 Burkholderia cepacia complex strains
- 1,257 CF patients.
- Susceptibility of 18 antimicrobial agents and synergy (23 combinations)
- Minocycline, meropenem, and ceftazidime
 - the most active, inhibiting 38%, 26%,and 23% of strains, respectively
 - *synergy was rarely noted (range, 1% to 15% of strains per antibiotic combination).



Any role for old antibiotics?

Minocycline against biofilm

In vitro antimicrobial activity for 24 h (baseline) and durability for up to 3 weeks of different antimicrobial-coated catheters against *A. baumannii*, *E. cloacae*, and *E. coli* (A) and *K. pneumoniae*, *P. aeruginosa*, and *S. maltophilia* (B).

M/R: minocycline-rifampin, CHX/SS: chlorhexidine silver sulfadiazine

CHX-M/R : chlorhexidine-minocycline- rifampin

Temocillin

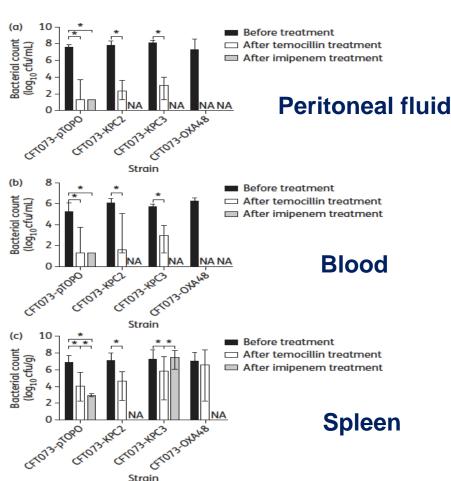
- \circ 6- α -methoxy derivative of ticarcillin
- In vitro spectrum restricted to *Enterobacteriaceae*
- No activity against Gram-positives and anaerobes
 - No affinity to PBP-1,-2,-3
 - Tightly binds PBP5 and PBP6
- No activity against Class B metalloenzymes or some Class D enyzmes (OXA-48)
- No breakpoints from EUCAST or CLSI

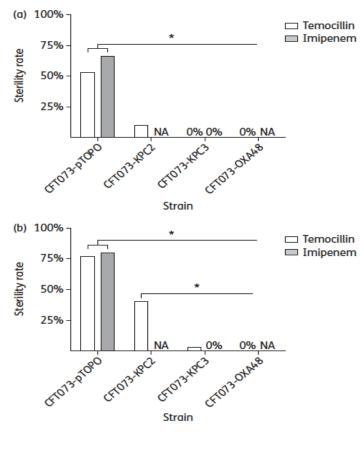
Any role for old antibiotics?

Temocillin Susceptibility and PKs

Country temocillin marketed	Sensitive	Resistant
Belgium	<u><</u> 16	>16
UK-BSAC systemic infection	<u><</u> 8	>8
UK-BSAC, uncomplicated UTI	<u><</u> 32	>32
France	<u>≤</u> 8	>8

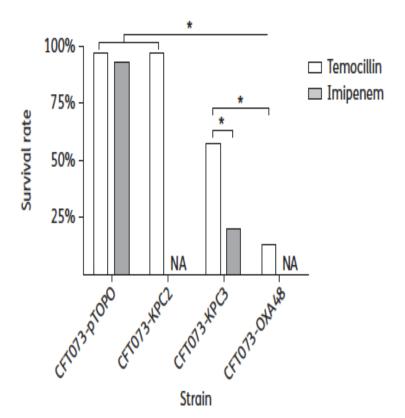
MIC (mg/L)


- o IM or IV 1-2 g every 2-3 times daily
- o 80% protein binding
- Urinary recovery of unmetabolized temocillin after 24h is 72-82%
 - 500 mg/L after 500 mg bid
- o Elimination half life 5 h
- Low CSF penetration
- Remains un-degraded for several days in aqueous solutions



Any role for old antibiotics?

Temocillin


Sterility rates

Colony Counts

Any role for old antibiotics? Temocillin

- Temocillin is stable against KPC enzymes
 - For success, determining factor may only be the MIC irrespective of KPC production
- Could be a therapetic option for UTI
 - Peritoneal infection may also be another target
- As its parent ticarcillin can be used up to 18 g/d, higher doses of temocillin may be tested for safety

Survival

Any role for old antibiotics? Isepamicin

Belongs to the aminoglycoside group

- Is derived from gentamicin B
 - theoretically, has better activity than amikacin against strains producing type 1 6'-N-acetyltransferase, which has been reported to be responsible for approximately 30% of the total resistance to aminoglycosides in the USA and west Europe, particularly among Enterobacteriaceae
- Antibacterial spectrum → Gram -) and (+) bacteria
 - anaerobes, Neisseriaceae and streptococci → to Isepamicin

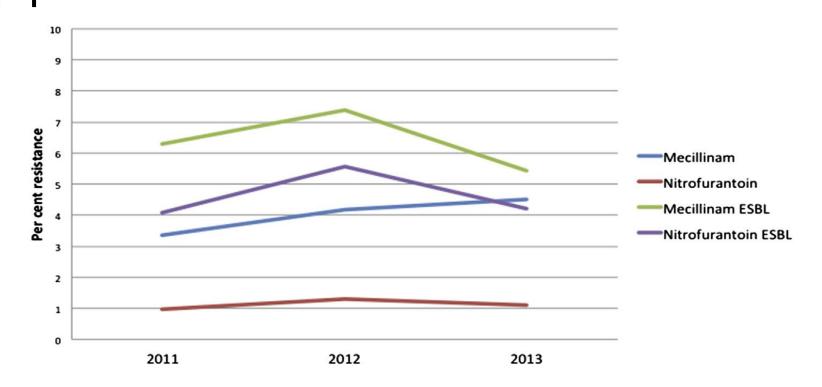
Available for clinical use in Taiwan, Korea, China, India, Japan, Hong Kong, Indonesia, Malaysia, Philippines, Vietnam, Singapore, Thailand, Bahrain, Turkey, Belgium and Italy

Relevant clinical data are limited

Any role for old antibiotics? Isepamicin

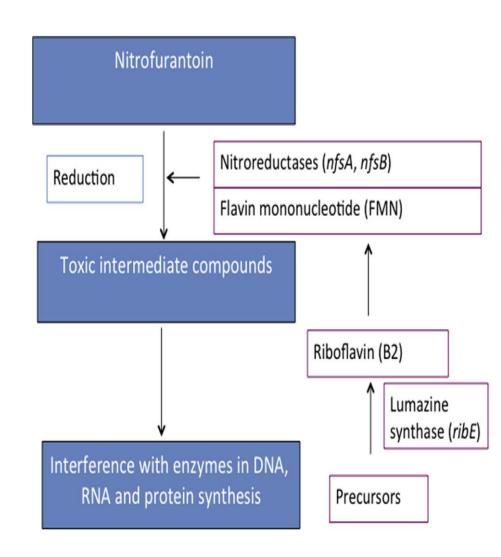
- Systematic review, 14 studies
- Microbiological and clinical studies
 - 4901 isolates tested
 - Isepamicin → higher in vitro activity compared with amikacin or active as amikacin
 - In MDR bacteria, isepamicin appeared superior to amikacin or active as to amikacin
 - Isepamicin might be active *in vitro* against Gram-negative bacteria with resistance to amikacin and other aminoglycosides.

Pivmecillinam / Mecillinam


A penicillin derivative : since the early 1980s for UTIs

- high concentration in the urine
- low impact on the intestinal microbiota
- inhibition of penicillin-binding protein 2 (PBP2)
- mechanisms of resistance are poorly understood
- ESBL-producing Enterobacteriaceae
- NDM and IMP producers: frequently in vitro susceptible to mecillinam while KPC and VIM producers are resistant
- Unpublished data also suggest that mecillinam is highly in vitro active against OXA-48 producers

Any role for old antibiotics? Mecillinam


- E. coli resistance levels to mecillinam (Swedish university hospital), 2011–2013.
- Range of tested E. coli per year: 22.142 to 23.951
- Number of ESBL-producing *E. coli*: range 637–830.

Nitrofurantoin

- Nitrofurans family nitrofurantoin
- PO high urinary concentrations
- Metagenomic analysis very low impact on the faecal microbiota
- Mechanism of resistance : mutations in nfsA or nfsB
- Low occurrence of resistance despite high usage low fitness nfsA/nfsB mutants

Any role for old antibiotics? Chloramphenicol

Activity against Gram (+) and (-) bacteria

- bacteriostatic
- bactericidal in high concentrations or when used against Streptococcus pneumoniae, Neisseria meningitidis or Haemophilus influenzae
- excellent tissue penetration
- achieves 30%–50% of the serum concentration in the CSF and therapeutic levels are also achieved in pleural, ascitic and synovial fluids
- dose adjustment is required in cases of hepatic insufficiency but not with renal insufficiency.

Any role for old antibiotics? Chloramphenicol

Chloramphenicol may be a useful antimicrobial agent for MDR organisms such as VRE, MRSA or MDR Gram-negative bacteria

- 3051 MSSA and MRSA isolates → 96% of MSSA and 83% of MRSA isolates were susceptible to chloramphenicol.
- 413 Enterobacteriaceae isolates,
 - 182 (44.1%) R to amoxicillin/clavulanate
 - 76 (18.4%) R to chloramphenicol
- 78 VRE bacteraemias
 - 51 patients (65.4%) received chloramphenicol.
 - Chloramphenicol treatment led to a favourable clinical (61.1%) and microbiological (79.1%) response
- Nosocomial VRE infections in 16 liver transplant recipients
 - 93% were susceptible to chloramphenicol and resistance did not occur in recurrent VRE isolates.

Trimethoprim-sulfamethoxazole (TMP-SMX)

- Inhibitis bacterial DNA synthesis through inhibition of the dihydrofolate pathway
- 2. Antibacterial activity against Gram (+) and bacteria
- 3. First-line treatment for
 - ✓ uncomplicated UTIs
 - ✓ skin and soft-tissue infections(SSTIs)
 - ✓ CA-MRSA infections

Trimethoprim-sulfamethoxazole (TMP-SMX)

TMP-SMX against MDR Acinetobacter isolates

- Non-susceptibility for *Acinetobacter* spp (4% to 98.2%)
- Non-susceptibility for MDR *Acinetobacter* spp, (5.9% to 100%)
- Resistance of Extensively drug-resistant Acinetobacter baumannii complex (100%)
- Carbapenem-R Acinetobacter spp.had non-susceptibility rates to TMP-SMX of >80%
- Polymyxin-resistant *A. baumannii* showed a susceptibility rate of 54.2%
- TMP-SMX for Acinetobacter spp. infections in combination with other agents

Although TMP-SMX is not usually active against *Acinetobacter* spp., it might be considered in cases where there are no other options.

Any role for old antibiotics? Conclusions

Old antibiotics

- a. Are reconsidered in clinical practice
 - mainly for severe infections
 - as salvage treatment (MDR)
- b. Small studies with heterogenity support their use
- c. Unclear PK/PDs
 - Unclear the right dose mainly in MDR treatment
- d. Safety
 - Well tolerated