H₂S and systemic inflammation

Andreas Papapetropoulos BPharm, PhD, FAHA, FBPhS Faculty of Pharmacy National and Kapodistrian University of Athens, Greece

Outline

- 1. Introduction
- 2. Production and degradation
- 3. Signaling, target and physiological functions
- 4. Agents regulating H₂S levels
- 5. H₂S, bacteria and antibiotics
- 6. H₂S and infection

Gasotransmitter Definition

<u>Gasotransmitter</u> is a gaseous messanger molecule involved in signaling processes

To be a gasotransmmiter, a molecule should:

- Be a small molecules of gas
- Be freely permeable to membranes. Its effects do not rely on cognate membrane receptors
- Be endogenously and enzymatically generated; the generation is regulated
- Have well-defined specific functions at physiologically relevant concentrations; functions of this endogenous gas can be mimicked by its exogenously applied counterpart
- Its cellular effects may or may not be mediated by second messengers, but the molecule should have specific cellular and molecular targets

Gasotransmitters

ENDOGENOUS GASOTRANSMITTERS

	Nitric Oxide	Carbon Monoxide	Hydrogen Sulfide
	NO	co	HSH
Enzymatic Production	nNOS iNOS eNOS	HO-1	CBS CSE (CGL) 3MST
Blood Concentration	low nM	nM-µM	high nM – low μ M
Half-life (<i>in vivo</i>)	seconds	minutes	seconds - minutes
Year of Discovery as a Physiological Modulator	1987	1991	1996

Polhemus & Lefer, Circ Res 114:730–737, 2014

Comparison of gasotransmitter properties

	NO	СО	H ₂ S
Biological sources	 NO synthases Non-enzymatic processes (for example, via conversion from nitrite) Conversion from nitrite by several bacteria (for instance, in the oral cavity) 	• Haem oxygenases	 Produced in mammalian cells from L-cysteine by at least three distinct enzymes Produced from D-cysteine in certain tissues (for example, the kidneys) Non-enzymatic processes Produced by enteral bacterial flora (for example, in the oral cavity and intestines)
Chemical properties	• A diffusible and labile free-radical gas	• A diffusible and labile gas	• A diffusible and labile gas
Biological half-life	 Short (a few seconds) 	 Long (minutes) 	 Medium (seconds to minutes)
Elimination	 Mainly via the urine as nitrite and nitrate A small amount is exhaled 	 Mainly unaltered, in the exhaled air 	 Via the urine as sulfite, sulfate and thiosulfate A small amount is exhaled
Key biological reactions	 Reacts with haem iron centres in various proteins Reacts with protein cysteines to initiate S-nitrosylation. Has multiple reactions with oxygen free radicals (for example, with superoxide, to yield peroxynitrite) Reacts with haemoglobin to yield nitrosyl-haemoglobin and met-haemoglobin 	 Binds to haem iron centres Reacts with haemoglobin to yield carboxyhaemoglobin 	 Binds to protein cysteines to initiate sulfhydration Reacts with oxygen free radicals Can form persulfides and polysulfides Reacts with haemoglobin to yield sulfhaemoglobin
Selected signalling pathways	 Activates guanylyl cyclase to increase cGMP levels Post-transcriptional protein modification via nitrosylation and reactions with haem groups Activates (opens) K_{ATP} channels 	 Reactions with haem groups Activates guanylyl cyclase (less potently than NO), which then forms cGMP Activates (opens) K_{cs} channels 	 Post-transcriptional protein modification via sulfhydration Activates (opens) K_{ATP} channels Inhibits cGMP and cAMP phosphodiesterases

Szabo, Nat Rev Drug Discov. 15:185-203, 2016

H₂S toxicity

H₂S toxicity

0.00047 ppm recognition threshold

< 10 ppm, exposure limit 8hr/d

50–100 ppm eye damage

100–150 ppm olfactory nerve paralysis

320–530 ppm leads to pulmonary edema

530–1000 ppm CNS stimulation, loss of breathing

800 ppm LC₅₀ for 5min exposure

> 1000 ppm immediate collapse with loss of breathing

Dangerous Japanese 'Detergent Suicide' Technique Creeps Into U.S.

By Kevin Poulsen 🖾 March 13, 2009 | 1:55 pm | Categories: Threats

Gasotransmitters target cytochrome C oxidase

Outline

1. Introduction

2. Production and degradation

- 3. Signaling, target and physiological functions
- 4. Agents regulating H₂S levels
- 5. H₂S, bacteria and antibiotics
- 6. H₂S and infection

H₂S biosynthesis

Wang & Wallace, Nat. Rev. Drug Discov, 14:329-45, 2015

Szabo & Papapetropoulos, Pharmacol. Rev., 69:497-564, 2017

H₂S synthesis in bacteria

Mammalian Production

H₂S-synthesizing enzyme localization

Peleli et al, Biochem Pharm, 176:113833, 2020

H₂S degradation

Mishanina et al., Nature Chem Biol, 11:457-464, 2015

Outline

- **1. Introduction**
- 2. Production and degradation
- 3. Signaling, target and physiological functions
- 4. Agents regulating H₂S levels
- 5. H₂S and bacteria
- 6. H₂S and infection

H₂S signaling

Examples of biological targets of H₂S

Adapted from Polhemus D J , and Lefer D J Circ Res 114:730-737, 2014

Physiological effects of H₂S

- Antioxidant
- Anti-apoptotic
- Angiogenesis stimulator
- Bronchodilation
- Cardioprotective
- Glucose and lipid homeostasis
- Inhibits atherosclerosis
- Inhibits fibrosis
- Inhibits inflammation
- Promotes physiological calcification (bone)
- Smooth muscle relaxation
- Vasorelaxation

Hydrogen Sulfide is an Anti-Inflammatory Molecule

Wang & Wallace, Nat Rev Drug Discov, 14:329-45, 2105

BIOMEDICAL RESEARCH FOUNDATION

ACADEMY OF ATHENS

Outline

- **1. Introduction**
- 2. Production and degradation
- 3. Signaling, target and physiological functions
- 4. Agents regulating H₂S levels
- 5. H₂S, bacteria and antibiotics
- 6. H₂S and infection

Concentration-response curves of gasotransmitters

Properties & Differences of H₂S donors

- Source (naturally occurring, synthetic)
- Sulfide salts (Na₂S, NaHS)-not really donors
- Mode of H₂S release: spontaneous vs controlled (Cys-activated, ROS-activated, pH-activated, esterase-activated)
- Rate of release
- Targeted delivery (AP39)
- Hybrid or bi-functional donors (ATB-346, adenine-H₂S, many others)
- Clinically used (NAC, cystine, zofenopril)

H₂S donors/precursors approved for human use

Beneficial effects of H₂S in traditional medicine

Hydrogen sulfide mediates the vasoactivity of garlic

Gioria A. Benavides**, Giuseppe L. Squadrito**, Robert W. Mills*, Hetai D. Patel*, T. Scott Isbeil*⁵, Rakesh P. Patel*⁶, Victor M. Darley-Usmar⁴⁵, Jeannette E. Doeller⁺⁺, and David W. Kraus⁺⁺⁺

Departments of "Environmental Health Sciences, "Biology, and ^IPathology and ⁴Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL35294

Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved September 12, 2007 (received for review June 18, 2007)

The consumption of garlic is inversely correlated with the Searcy and Lee (11), corroborated by ourselves (data not progression of cardiovascular disease, although the responsible shown), have demonstrated that human RBCs produce H₂S mechanisms remain unclear. Here we show that human RBCs when provided with elemental sulfur (Sa) or inorganic polysulconvert garlic-derived organic polysulfides into hydrogen sul- fides (Sz2- and Sz2-). However, because inorganic polysulfides

ANG

Translation of H₂S donors

Institution (location)	Structure	Clinical indications	Lead drug	Comment	Stage of development
Antibe Therapeutics (Toronto, Ontario, Canada) H ₃ CO O H ₃ CO O NI O ATB-346	H ₃ CO O NH ₂	Osteoarthritis	ATB-346	Naproxen derivative	Phase I
		Acute pain	ATB-352	Ketoprofen derivative	Preclinical
	ATB-346	Veterinary (pain)	ATB-338	Diclofenac derivative	Preclinical
		Thrombosis	ATB-350	Aspirin derivative	Preclinical
City University of New York (New York, USA)	S S S S S S S S S S S S S S S S S S S	Cancer	NBS-1120	Aspirin derivative	Preclinical
Glcare Pharma (Montreal, Quebec, Canada)	$H_{3}CO$ $H_{3}CO$ $H_{3}CO$ $H_{3}CO$ O $H_{3}CO$ O O O $H_{3}CO$ O O O $H_{3}CO$ O O O $H_{3}CO$ O O O $H_{3}CO$ O O O O $H_{3}CO$ O O O $H_{3}CO$ O O $H_{3}CO$ O O O O $H_{3}CO$ O O O O $H_{3}CO$ O O O O O O O O O	Colonic pain	GIC-1001	Trimebutine salt; licensed from Antibe Therapeutics	Phase II for analgesia during colonoscopy*
National University of Singapore (Singapore)	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) $	Hypertension, inflammation, cancer	GYY4137	Slow-releasing H ₂ S donor	Unknown
Sova Pharmaceuticals (La Jolla, California, USA	No structure available	Pain, metabolic disorders	Unknown	Inhibitor of CSE activity	Unknown
SulfaGENIX (New Orleans, Louisiana, USA)	S ∕ S S ∖S /S S ∕ S S	Oxidative stress	SG-1002	Polyvalent sulfur	Phase II for heart failure‡
University of Exeter (Exeter, UK)	S-S-S Br ⁻ v-lyase: H.S. bydrogen sulfide, *ClinicalTrials nov identifiers: NCT0102	Inflammation, oxidative stress	AP39	Mitochondrion- targeted H ₂ S release	Preclinical

BRFAA BIOMEDICAL RESEARCH FOUNDATION ACADEMY OF ATHENS

Wang & Wallace, Nat Rev Drug Discov, 14:329-45, 2105

H₂S-Releasing Anti-Inflammatory Drugs

- 30 million people take NSAIDs on a daily basis
- 15.3 deaths per 100,000 users

Otenaproxesul (ATB-346)

ATB-346 Causes Negligible Gastric Damage

Wallace et al., Br J Pharmacol. 159: 1236–1246, 2010

Otenaproxesul reduces prostaglandin synthesis in patients with OA

GI safety of otenaproxesul

H₂S synthesis inhibitors

Compounds	CSE, IC ₅₀ (μΜ)	CBS, IC ₅₀ (μΜ)
PAG	40.0 ± 8.0	_
BCA	14.0 ± 0.16	-
HA	4.83 ± 0.31	278.0 ± 22.0
AOAA	1.09 ± 0.12	8.52 ± 0.71
Trifluoroalanine	289.0 ± 7.0	66.0 ± 9.0
AVG	1.0 ± 0.1	_

Asimakopoulou et al, Br. J. Pharmacol, 169: 922–932, 2013

CBS is over expressed in human colorectal cancer

Szabo C et al. PNAS, 110:12474-12479, 2013

Down-regulation or pharmacological inhibition of CBS inhibits proliferation of HCT116 cells

Szabo C et al. PNAS, 110:12474-12479, 2013

ACADEMY OF ATHENS

Adenoviral-mediated CBS overexpression enhances the proliferation rate of NCM356 cells

Szabo C et al. PNAS, 110:12474-12479, 2013

ShRNA-mediated CBS down-regulation inhibits colon cancer growth in vivo

AOAA inhibits colon cancer growth and tumor angiogenesis in vivo

PT DIF PDTX RIT

Szabo C et al. PNAS, 110:12474-12479, 2013

Outline

- **1. Introduction**
- 2. Production and degradation
- 3. Signaling, target and physiological functions
- 4. Agents regulating H₂S levels
- 5. H₂S, bacteria and antibiotics
- 6. H₂S and infection

Inhibition of H₂S production renders bacteria sensitive to antibiotics

Shatalin et al., Science, 334(6058), 986–99, 2011

Mechanisms of antibiotics resistance involving H₂S

ACADEMY OF ATHENS

H₂S and neutrophils

Dilek et al., Pharmacol Res, 161:105119, 2020

H₂S and macrophages

Dilek et al., Pharmacol Res, 161:105119, 2020

Outline

- **1. Introduction**
- 2. Production and degradation
- 3. Signaling, target and physiological functions
- 4. Agents regulating H₂S levels
- 5. H₂S, bacteria and antibiotics
- 6. H₂S and infection

H₂S and Covid-19

Yang, Am J Physiol Heart Cic Physiol, 319: C244-C249, 2020

Literature <u>https://pubmed.ncbi.nlm.nih.gov/32781284/</u> <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029659/</u>

